폐수의 고도처리를 위한 무산소/호기형 분리막생물반응조 - 역삼투 공정과 활성슬러지공정 - 정밀여과 - 역삼투 공정의 비교

Comparison of Anoxic/Oxic Membrane Bioreactor - Reverse Osmosis and Activated Sludge Process-Microfiltration-Reverse Osmosis Process for Advanced Treatment of Wastewater

  • 노성희 (조선대학교 생명화학공학과) ;
  • 김선일 (조선대학교 생명화학공학과) ;
  • 전홍화 (조선대학교 생명화학공학과) ;
  • 송연호 (조선대학교 생명화학공학과)
  • Roh, Sung-Hee (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Kim, Sun-Il (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Quan, Hong-hua (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Song, Yon-Ho (Department of Chemical and Biochemical Engineering, Chosun University)
  • 투고 : 2006.07.26
  • 심사 : 2006.08.18
  • 발행 : 2006.10.10

초록

폐수를 재이용하기 위한 고도처리 시스템으로서 분리막 생물반응조(Membrane Bioreactor, MBR)는 기존의 활성슬러지 공정(Activated Sludge Process, ASP)에 비하여 많은 장점을 가지고 있다. 도시 하수 중에 포함된 유기물과 영양염류를 동시에 제거하기 위하여 침지형 정밀여과(Microfiltration, MF) 막을 이용한 무산소/호기(Anoxic/Oxic, A/O)형 MBR에서 투과플럭스를 $10.2L/m^2{\cdot}h$로 일정하게 유지하면서 고형물 체류시간(Solids Retention Time, SRT) 변화에 따른 막 여과 특성을 조사하였다. 실험 결과, SRT를 증가시킬수록 체외고분자물질(Extracellular Polymeric Substances, EPS)내 단백질/탄수화물(Protein/Carbohydrate, P/C) 비가 높아져서 막 오염이 빠르게 진행되었다. A/O MBR에 RO막을 결합한 A/O MBR-RO 공정을 폐수의 고도처리에 적용하고자 하였으며, 성능평가를 위해 A/O MBR-RO 공정과 기존의 활성슬러지 공정에 MF와 RO막을 결합한 ASP-MF-RO 공정의 유기물 및 영양염류 제거율을 비교하였다. 실험 결과 A/O MBR-RO 공정이 ASP-MF-RO 공정보다 더 우수한 처리효율을 나타내었다.

과제정보

연구 과제 주관 기관 : 조선대학교

참고문헌

  1. H. S. Shin, S. T. Kang, and S. Y. Nam, Biotech. Bioprocess Eng., 5, 460 (2000) https://doi.org/10.1007/BF02931948
  2. T. Mukai, in Proc. of Asian Water Quality 97, 1499 (1997)
  3. J. Soreusen, D. E. Thoruberg, and M. K. Neilsen, Water Res., 66, 236 (1994) https://doi.org/10.2175/WER.66.3.9
  4. M. Dubois, Anal. Chem., 28, 350 (1956) https://doi.org/10.1021/ac60111a017
  5. J. J. Qin, K. A. Kekre, G. Tae, M. H. Oo, M. N. Wai, T. C. Lee, B. Viswanath, and H. Seah, J. Membrane Sci., 272, 70 (2006) https://doi.org/10.1016/j.memsci.2005.07.023
  6. Y. Wang, X. Huang, and Q. Yuan, Pro. Biochem., 40, 1733 (2005) https://doi.org/10.1016/j.procbio.2004.06.039
  7. APHA, Standards Methods for the Examination of Water and Wastewater, 20thed. American Public Health Association, Washington DC. (1998)
  8. V. Gulas, M. Bond, and L. Benefield, J. Water Pollut. Control Fed., 51, 798 (1979)
  9. M. J. Brown and H. N. Lester, Appl. Environ. Microbio., 40, 179 (1980)
  10. A. D. Bailey, G. S. Hansford, and P. L. Dold, Water Res., 28, 297 (1994) https://doi.org/10.1016/0043-1354(94)90267-4
  11. K. J. Kim and S. H. Yoon, J. Korean Ind. Eng. Chem., 12, 239 (2001)
  12. M. Mayhew and T. Stephenson, Environ. Tech., 18, 883 (1997) https://doi.org/10.1080/09593331808616607
  13. J. W. Lee, Biotech. Letters, 19, 799 (1997) https://doi.org/10.1023/A:1018304729724
  14. W. L. Jones, P. A. Wilderer, and E. D. Schroeder, J. WPCF, 62, 259 (1990)
  15. M. Huh, B. G. Kim, and J. Y. Kang, J. Korean Environ. Eng., 24, 171 (2002)
  16. J. A. Lopez-Ramirez, S. Sahuquillo, D. Sales, and J. M. Quiroga, Water Res., 37, 1177 (2003) https://doi.org/10.1016/S0043-1354(02)00062-3
  17. O. H. Lowry, Bio. Chem., 193, 265 (1951)
  18. H. S. Shin, H. H. An, and S. T. Kang, J. Korean Soc. Water Quality, 5, 415 (1999)