Applied Chemistry for Engineering (공업화학)
- Volume 17 Issue 5
- /
- Pages.521-526
- /
- 2006
- /
- 1225-0112(pISSN)
- /
- 2288-4505(eISSN)
Comparison of Anoxic/Oxic Membrane Bioreactor - Reverse Osmosis and Activated Sludge Process-Microfiltration-Reverse Osmosis Process for Advanced Treatment of Wastewater
폐수의 고도처리를 위한 무산소/호기형 분리막생물반응조 - 역삼투 공정과 활성슬러지공정 - 정밀여과 - 역삼투 공정의 비교
- Roh, Sung-Hee (Department of Chemical and Biochemical Engineering, Chosun University) ;
- Kim, Sun-Il (Department of Chemical and Biochemical Engineering, Chosun University) ;
- Quan, Hong-hua (Department of Chemical and Biochemical Engineering, Chosun University) ;
- Song, Yon-Ho (Department of Chemical and Biochemical Engineering, Chosun University)
- Received : 2006.07.26
- Accepted : 2006.08.18
- Published : 2006.10.10
Abstract
A membrane bioreactor (MBR) is an effective tool for wastewater treatment with recycling. MBR process has several advantages over conventional activated sludge process (ASP); reliability, compactness, and quality of treated water. The resulting high-quality and disinfected effluents suggest that MBR process can be suitable for the reused and recycling of wastewater. An anoxic/oxic (A/O) type MBR was applied to simultaneous removal of organics and nutrients in sewage. At first, the efficiency of submerged MBR process was investigated using a hollow fiber microfiltration membrane with a constant flux of
Keywords
membrane bioreactor;microfiltration;reverse osmosis
File
Acknowledgement
Supported by : 조선대학교
References
- H. S. Shin, S. T. Kang, and S. Y. Nam, Biotech. Bioprocess Eng., 5, 460 (2000) https://doi.org/10.1007/BF02931948
- T. Mukai, in Proc. of Asian Water Quality 97, 1499 (1997)
- J. Soreusen, D. E. Thoruberg, and M. K. Neilsen, Water Res., 66, 236 (1994) https://doi.org/10.2175/WER.66.3.9
- M. Dubois, Anal. Chem., 28, 350 (1956) https://doi.org/10.1021/ac60111a017
- J. J. Qin, K. A. Kekre, G. Tae, M. H. Oo, M. N. Wai, T. C. Lee, B. Viswanath, and H. Seah, J. Membrane Sci., 272, 70 (2006) https://doi.org/10.1016/j.memsci.2005.07.023
- Y. Wang, X. Huang, and Q. Yuan, Pro. Biochem., 40, 1733 (2005) https://doi.org/10.1016/j.procbio.2004.06.039
- APHA, Standards Methods for the Examination of Water and Wastewater, 20thed. American Public Health Association, Washington DC. (1998)
- V. Gulas, M. Bond, and L. Benefield, J. Water Pollut. Control Fed., 51, 798 (1979)
- M. J. Brown and H. N. Lester, Appl. Environ. Microbio., 40, 179 (1980)
- A. D. Bailey, G. S. Hansford, and P. L. Dold, Water Res., 28, 297 (1994) https://doi.org/10.1016/0043-1354(94)90267-4
- K. J. Kim and S. H. Yoon, J. Korean Ind. Eng. Chem., 12, 239 (2001)
- M. Mayhew and T. Stephenson, Environ. Tech., 18, 883 (1997) https://doi.org/10.1080/09593331808616607
- J. W. Lee, Biotech. Letters, 19, 799 (1997) https://doi.org/10.1023/A:1018304729724
- W. L. Jones, P. A. Wilderer, and E. D. Schroeder, J. WPCF, 62, 259 (1990)
- M. Huh, B. G. Kim, and J. Y. Kang, J. Korean Environ. Eng., 24, 171 (2002)
- J. A. Lopez-Ramirez, S. Sahuquillo, D. Sales, and J. M. Quiroga, Water Res., 37, 1177 (2003) https://doi.org/10.1016/S0043-1354(02)00062-3
- O. H. Lowry, Bio. Chem., 193, 265 (1951)
- H. S. Shin, H. H. An, and S. T. Kang, J. Korean Soc. Water Quality, 5, 415 (1999)