Comparison of Anoxic/Oxic Membrane Bioreactor - Reverse Osmosis and Activated Sludge Process-Microfiltration-Reverse Osmosis Process for Advanced Treatment of Wastewater

폐수의 고도처리를 위한 무산소/호기형 분리막생물반응조 - 역삼투 공정과 활성슬러지공정 - 정밀여과 - 역삼투 공정의 비교

  • Roh, Sung-Hee (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Kim, Sun-Il (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Quan, Hong-hua (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Song, Yon-Ho (Department of Chemical and Biochemical Engineering, Chosun University)
  • 노성희 (조선대학교 생명화학공학과) ;
  • 김선일 (조선대학교 생명화학공학과) ;
  • 전홍화 (조선대학교 생명화학공학과) ;
  • 송연호 (조선대학교 생명화학공학과)
  • Received : 2006.07.26
  • Accepted : 2006.08.18
  • Published : 2006.10.10


A membrane bioreactor (MBR) is an effective tool for wastewater treatment with recycling. MBR process has several advantages over conventional activated sludge process (ASP); reliability, compactness, and quality of treated water. The resulting high-quality and disinfected effluents suggest that MBR process can be suitable for the reused and recycling of wastewater. An anoxic/oxic (A/O) type MBR was applied to simultaneous removal of organics and nutrients in sewage. At first, the efficiency of submerged MBR process was investigated using a hollow fiber microfiltration membrane with a constant flux of $10.2L/m^2{\cdot}h$ at each solids retention time (SRT). Results showed that protein/carbohydrate (P/C) ratio increased and total extracellular polymeric substances (EPS) remained constant with SRT increased. Secondly, A/O type MBR with a reverse osmosis (RO) membrane was employed to treat the municipal wastewater. The performance of A/O type MBR-RO process is better for the treatment of organics and nutrients than ASP-MF-RO process in terms of consistent effluents quality.


Supported by : 조선대학교


  1. H. S. Shin, S. T. Kang, and S. Y. Nam, Biotech. Bioprocess Eng., 5, 460 (2000)
  2. T. Mukai, in Proc. of Asian Water Quality 97, 1499 (1997)
  3. J. Soreusen, D. E. Thoruberg, and M. K. Neilsen, Water Res., 66, 236 (1994)
  4. M. Dubois, Anal. Chem., 28, 350 (1956)
  5. J. J. Qin, K. A. Kekre, G. Tae, M. H. Oo, M. N. Wai, T. C. Lee, B. Viswanath, and H. Seah, J. Membrane Sci., 272, 70 (2006)
  6. Y. Wang, X. Huang, and Q. Yuan, Pro. Biochem., 40, 1733 (2005)
  7. APHA, Standards Methods for the Examination of Water and Wastewater, 20thed. American Public Health Association, Washington DC. (1998)
  8. V. Gulas, M. Bond, and L. Benefield, J. Water Pollut. Control Fed., 51, 798 (1979)
  9. M. J. Brown and H. N. Lester, Appl. Environ. Microbio., 40, 179 (1980)
  10. A. D. Bailey, G. S. Hansford, and P. L. Dold, Water Res., 28, 297 (1994)
  11. K. J. Kim and S. H. Yoon, J. Korean Ind. Eng. Chem., 12, 239 (2001)
  12. M. Mayhew and T. Stephenson, Environ. Tech., 18, 883 (1997)
  13. J. W. Lee, Biotech. Letters, 19, 799 (1997)
  14. W. L. Jones, P. A. Wilderer, and E. D. Schroeder, J. WPCF, 62, 259 (1990)
  15. M. Huh, B. G. Kim, and J. Y. Kang, J. Korean Environ. Eng., 24, 171 (2002)
  16. J. A. Lopez-Ramirez, S. Sahuquillo, D. Sales, and J. M. Quiroga, Water Res., 37, 1177 (2003)
  17. O. H. Lowry, Bio. Chem., 193, 265 (1951)
  18. H. S. Shin, H. H. An, and S. T. Kang, J. Korean Soc. Water Quality, 5, 415 (1999)