The Effect of SO2 in Flue Gas on the SCR Activity of V/TiO2

배가스 중 SO2가 V/TiO2 SCR활성에 미치는 영향

  • Hong, Sung-Chang (Department of Environmental Engineering, Kyonggi University)
  • 홍성창 (경기대학교 환경공학과)
  • Received : 2006.06.23
  • Accepted : 2006.07.31
  • Published : 2006.10.10

Abstract

$V_{2}O_{5}$/$TiO_{2}$ catalyst can be deactivated by ammonium salts formed by $SO_{2}$ oxidation and unreacted ammonium in presence of $SO_{2}$ in flue gas. The deactivation of catalyst by $SO_{2}$ depends on the $SO_{2}$ oxidation to $SO_{3}$. The oxidation of $SO_{2}$ is weakly affected by oxygen concentration, and strongly by the amount of vanadium loaded onto titania supports. Because unreacted ammonia is one of elements to form the ammonium salts, it is important to control the mole ratio of $NH_{3}/NOx$ in SCR. Thus the experiments about $NH_{3}/NOx$ were carried out. The reason of low activity of catalyst deactivated by ammonium salts is the change of pore volume. And TPD (Temperature Programmed Decomposition) was performed to find the decomposition of ammonium bisulfate on deactivated catalyst.

Keywords

selective catalytic reduction;$SO_{2}$;ammonium bisulfate;deactivation

Acknowledgement

Supported by : 경기대학교

References

  1. N. W. Cant, A. D. Cowan, I. O. Y. Liu, and A. Satsuma, Catal. Today, 54, 473 (1999) https://doi.org/10.1016/S0920-5861(99)00210-2
  2. U. S. Ozkan, M. W. Kumthekar, and Y. P. Cai, Ind. Eng. Chem. Res., 33, 2924 (1994) https://doi.org/10.1021/ie00036a005
  3. K. Kusakabe, H. Kawamura, H. J. Kim, and S. Morooka, Fuel, 69, 917 (1990) https://doi.org/10.1016/0016-2361(90)90242-I
  4. Y. G. Lee, M. S. Thesis, Pohang Univ. of Sci. and Tech., Pohang, Korea (1999)
  5. J. P. Dunn, P. R. Koppula, H. G. Stenger, and I. E. Wachs, Appl. Catal., 19, 103 (1998) https://doi.org/10.1016/S0926-3373(98)00060-5
  6. J. P. Dunn, H. G. Stenger Jr., and I. E. Wachs, Catal. Today, 51, 301 (1999) https://doi.org/10.1016/S0920-5861(99)00052-8
  7. C. Orsenigo, A. Beretta, P. Forzatti, J. Svachula, E. Tronconi, F. Bregani, and A. Baldacci, Catal. Today, 27, 15 (1996) https://doi.org/10.1016/0920-5861(95)00168-9
  8. C. Orsenigo, L. Lietti, E. Tronconi, P. Forzatti, and F. Bregani, Ind. Eng. Chem. Res., 37, 2350 (1998) https://doi.org/10.1021/ie970734t
  9. K. A. Bethke, C. Li, M. C. Kung, B. Yang, and H. H. Kung, Catal. Lett., 31, 287 (1995) https://doi.org/10.1007/BF00808841
  10. J. M. Calo, E. M. Suuberg, I. Aarna, S. Linares-Solano, De. L. C., Linas-Martinez, and M. J. Lllan-Gomez, Energy and Fuel, 13, 761 (1999) https://doi.org/10.1021/ef980244t
  11. S. H. Moon, Ph. D., Seoul National Univ., Seoul, Korea (1996)
  12. J. Svachula, L. J. Alemany, N. Ferlazzo, P. Forzatti, and E. Tronconi, Ind. Eng. Chem. Res., 32, 826 (1993) https://doi.org/10.1021/ie00017a009
  13. H. L. Hill, 'SCR Process Cuts NOx Emission' Hydrocarbon Processing, 141 (Feb.1981)
  14. S. Kasaoka, E. Sasaoka, and H. Iwasaki, Bull. Chem. Soc. Jpn, 62, 1226 (1989) https://doi.org/10.1246/bcsj.62.1226
  15. M. J. Yoon, M. S. Thesis, Korea Univ., Seoul, Korea (1998)