A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication

팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구

  • Hwang, Yong-Mook (Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Kim, Kwang-Je (Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • So, Won-Wook (Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Moon, Sang-Jin (Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Lee, Kwan-Young (Department of Chemical & Biological Engineering, Korea University)
  • Received : 2006.04.10
  • Accepted : 2006.09.07
  • Published : 2006.10.10


The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.


hydrogen separation;palladium composite membrane;intermediate layer;electroless plating


  1. H. T. Hoang, H. D. Tong, F, C, Gielens, H. V. Jansen, and M. C. Elwenspoek, Mater. Lett., 58, 525 (2003) https://doi.org/10.1016/S0167-577X(03)00539-1
  2. N. Jemaa, J. Shu, S. Kaliaguine, and B. P. A. Grandjean, Ind. Eng. Chem. Res., 35, 973 (1996) https://doi.org/10.1021/ie950437t
  3. H. Gao, J. Y. S. Lin, Y. Li, and B. Zhang, J. Membr. Sci., 265, 142 (2005) https://doi.org/10.1016/j.memsci.2005.04.050
  4. D. Wang, J. Tong, H. Xu, and Y. Matsumura, Catal. Today., 93, 689 (2004) https://doi.org/10.1016/j.cattod.2004.06.060
  5. W. W. So, S. B. Park, and S. J. Moon, J. Mater. Sci. Lett., 17, 1219 (1998) https://doi.org/10.1023/A:1006554013259
  6. S. Yan, H. Maeda, K. Kusakabe, and S. Morooka, Ind. Eng. Chem. Res., 33, 616 (1994) https://doi.org/10.1021/ie00027a019
  7. J. Shu, B. P. A. Grandjean, E. Ghali, and S. Kaliaguine, J. Membr. Sci., 77, 181 (1993) https://doi.org/10.1016/0376-7388(93)85068-8
  8. J. Tong, R. Shirai, Y. Kashima, and Y. Matsumura, J. Membr. Sci., 260, 84 (2005) https://doi.org/10.1016/j.memsci.2005.03.039
  9. J. Tong, Y. Matsumura, H. Suda, and K. Haraya, Sep. Purif. Technol., 46, 1 (2005) https://doi.org/10.1016/j.seppur.2005.03.011
  10. H. Zhao, A. Li, J. Gu, and G Xiong, J. Mater. Sci., 34, 2987 (1999) https://doi.org/10.1023/A:1004616309085
  11. S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda, and E. Kikuchi, J. Membr. Sci., 56, 303 (1991) https://doi.org/10.1016/S0376-7388(00)83040-9
  12. P. P. Mardilovich, Y. Shing, Y. H. Ma, and M.-H. Rei, AIChE J., 44, 310 (1998) https://doi.org/10.1002/aic.690440209
  13. S. N. Paglieri and J. D. Way, Sep. Purif. Methods, 31, 1 (2002) https://doi.org/10.1081/SPM-120006115
  14. R. Dittmeyer, V. Hollein, and K. Daub, J. Mol, Catal. A: Chem., 173, 135 (2001) https://doi.org/10.1016/S1381-1169(01)00149-2
  15. G. Xomeritakis and Y. S. Lin, J. Membr. Sci., 120, 261 (1996) https://doi.org/10.1016/0376-7388(96)00149-4
  16. F. Roa, J. D. Way, R. McCormick, and S. N. Paglier, Chem. Eng. J., 93, 11 (2003) https://doi.org/10.1016/S1385-8947(02)00106-7
  17. J. N. Armor, Appl. Catal., 49, 1 (1989) https://doi.org/10.1016/S0166-9834(00)81418-9
  18. W. W. So, S. B. Park, K. J. Kim, C. H. Shin, and S. J. Moon, J. Mater. Sci., 36, 4299 (2001) https://doi.org/10.1023/A:1017955408308
  19. J. Tong, H. Suda, K. Haraya, and Y. Matsumura, J. Membr. Sci., 260, 10 (2005) https://doi.org/10.1016/j.memsci.2005.03.016
  20. S. Uemiya, M. Kajiwara, and T. Kojima, AIChE J., 43, 2715 (1997) https://doi.org/10.1002/aic.690431317
  21. K. L. Yeung and A. Varma, and AIChE J., 41, 2131 (1995) https://doi.org/10.1002/aic.690410912
  22. C. Su, T. Jin, K. Kuraoka, Y. Matsumura, and T. Yazawa, Ind. Eng. Chem. Res., 44, 3053 (2005) https://doi.org/10.1021/ie049349b
  23. S. E. Nam and K. H. Lee, J. Membr. Sci., 192, 177 (2001) https://doi.org/10.1016/S0376-7388(01)00499-9
  24. R. Ramachandran and R. Menon, Int. J. Hydrogen Energy, 23, 593 (1998) https://doi.org/10.1016/S0360-3199(97)00112-2