Removal of CO2 in Syngas using Li2ZrO3

Li2ZrO3를 이용한 합성가스내의 CO2 제거

  • Park, Joo-Won (Department of Chemical Engineering, Kwangwoon University) ;
  • Kang, Dong-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Yoo, Kyung-Seun (Department of Environmental Engineering, Kwangwoon University) ;
  • Lee, Jae-Goo (Thermal Process Research Center, Korea Institute of Energy Research) ;
  • Kim, Jae-Ho (Thermal Process Research Center, Korea Institute of Energy Research) ;
  • Han, Choon (Department of Chemical Engineering, Kwangwoon University)
  • 박주원 (광운대학교 화학공학과) ;
  • 강동환 (광운대학교 화학공학과) ;
  • 유경선 (광운대학교 환경공학과) ;
  • 이재구 (한국에너지기술연구원 열공정연구센터) ;
  • 김재호 (한국에너지기술연구원 열공정연구센터) ;
  • 한춘 (광운대학교 화학공학과)
  • Received : 2005.09.13
  • Accepted : 2005.12.27
  • Published : 2006.06.10

Abstract

Reaction of $CO_2$ with $Li_{2}ZrO_{3}$ has been investigated in a TGA and the effects of $H_{2}$ and CO on the removal of $CO_{2}$ using $Li_{2}ZrO_{3}$ were evaluated in a packed bed reactor. The initial rate of $CO_{2}$ removal reaction of $Li_{2}ZrO_{3}$ increased with the increase of gas flow rate up to 100 mL/min and then was maintained, which implied the disappearance of the gas film resistance. The reaction of $CO_{2}$ with $Li_{2}ZrO_{3}$ took place as the first order and the range of optimum temperature was found to be about $500{\sim}600^{\circ}C$. XRD and SEM analysis showed the formation of crystalline $Li_{2}ZrO_{3}$ and porous $Li_{2}ZrO_{3}$/$ZrO_{2}$. The presence of $H_{2}$ did not affect the adsorption of $CO_2$ with $Li_2ZrO_3$. On the other hand, CO inhibited the sorption of $CO_{2}$ into $Li_{2}CO_{3}$(L) on $Li_{2}ZrO_{3}$.

References

  1. T. Jing, Y. Niu, and B. Zhong, Fuel Processing Technol., 73, 175 (2001) https://doi.org/10.1016/S0378-3820(01)00178-3
  2. J. R. Rostrup-Nielsen, Catal. Today, 71, 243 (2002) https://doi.org/10.1016/S0920-5861(01)00454-0
  3. Q. G. Yan, W. Z. Weng, H. L. Wan, H. Toghiani, R. K. Toghiani, and C. U. Pittman, Jr., Appl. Catal. A: Gen., 239, 43 (2003) https://doi.org/10.1016/S0926-860X(02)00351-4
  4. M. Pineda, J. M. Palacios, L. Alonso, E. García, and R. Moliner, Fuel, 79, 885 (2001) https://doi.org/10.1016/S0016-2361(99)00218-5
  5. K. Nakagawa and T. Ohashi, Proceedings-Electrochemical Society, 145, 370 (1998)
  6. H. Tatsuro, H. Hiroaki, F. Takehisa, K. Yukio, and M. Toshiaki, Appl. Cata. A. 167, 195 (1998) https://doi.org/10.1016/S0926-860X(97)00318-9
  7. R. Xiong, J. Ida, and Y. S. Lin, Chemical Engineering Science, 58, 4377 (2003) https://doi.org/10.1016/S0009-2509(03)00319-1
  8. J. Ida, R. Xiong, and Y. S. Lin, Separation and Purification Technology, 1, 1 (2003)
  9. J. Ida and Y. S. Lin, Environ. Sci. Technol., 37, 1999 (2003) https://doi.org/10.1021/es0259032