The Effect of Solvent Density on the Ethyl Acetoaceate Tautomerism

에틸 아세토아세테이트 토토머리즘 평형 상수의 밀도 의존성

  • Park, YoonKook (Department of Chemical System Engineering, Hongik University)
  • 박윤국 (홍익대학교 화학시스템공학과)
  • Received : 2006.03.30
  • Accepted : 2006.05.09
  • Published : 2006.06.10

Abstract

The keto-enol tautomeric equilibrium constant, K, of ethyl acetoacetate in compressed and supercritical carbon dioxide was determined by using FT-IR (Fourier transform infrared) spectroscopy at three different temperatures. In order to investigate the effect of solvent density, the $CO_{2}$ pressure was systematically changed at a constant temperature. As the $CO_{2}$ density is increased, the amount of keto tautomer is increased, causing the K value to decrease. The modified lattice fluid hydrogen bonding theory has been applied to investigate the effect of density on the K.

Acknowledgement

Supported by : 미국과학재단

References

  1. P. W. Bell, A. J. Thote, Y. Park, R. B. Gupta, and C. B. Roberts, Ind. Eng. Chem. Res., 42, 6280 (2003) https://doi.org/10.1021/ie030169w
  2. T. Sarbu, T. Styranec, and E. J. Beckman, Nature, 405, 165 (2000) https://doi.org/10.1038/35012040
  3. P. Raveendran and S. L. Wallen, J. Am. Chem. Soc., 124, 7274 (2002) https://doi.org/10.1021/ja025508b
  4. J. Lu, B. Han, and H. Yan, Phys. Chem. Chem. Phys., 1, 3269 (1999) https://doi.org/10.1039/a901854i
  5. M. M. Folkendt, B. E. Weiss-Lopez, J. P. Chauvel, and N. S. True, J. Phys. Chem., 89, 3347 (1985) https://doi.org/10.1021/j100261a038
  6. S. G. Mills and P. Beak, J. Org. Chem., 1985. 50, 1216 (1985) https://doi.org/10.1021/jo00208a014
  7. J. Powling and H. J. Bernstein, J. Am. Chem. Soc., 73, 4353 (1951) https://doi.org/10.1021/ja01153a094
  8. M. M. Schiavoni, H. E. Di Loreto, A. Hermann, H.-G. Mack, S. E. Ulic, and C. O. Della Vedova, J. Raman Spectrosc., 32, 319 (2001) https://doi.org/10.1002/jrs.701
  9. M. C. Henry and C. R. Yonker, Anal. Chem., 76, 4684 (2004) https://doi.org/10.1021/ac049451i
  10. Y. Park and C. H. Turner, J. Supercrit. Fluids, 37, 201 (2006) https://doi.org/10.1016/j.supflu.2005.10.001
  11. Y. Park, R. B. Gupta, C. W. Curtis, and C. B. Roberts, J. Phys. Chem. B, 106, 9696 (2002) https://doi.org/10.1021/jp020447p
  12. Y. Fujii, H. Yamada, and M. Mizuta, J. Phys. Chem., 92, 6768 (1988) https://doi.org/10.1021/j100334a054
  13. http://webbook.nist.gov/chemistry/fluid/
  14. P. Raveendran and S. L. Wallen, J. Am. Chem. Soc., 124, 12590 (2002) https://doi.org/10.1021/ja0174635
  15. S. G. Kazarian, M. F. Vincent, F. V. Bright, C. L. Liotta, and C. A. Eckert, J. Am. Chem. Soc., 118, 1729 (1996) https://doi.org/10.1021/ja950416q
  16. R. B. Gupta, C. G. Panayiotou, I. C. Sanchez, and K. P. Johnston, AIChE J., 38, 1243 (1992) https://doi.org/10.1002/aic.690380811
  17. Y. Park, Ph.D. Dissertation, Auburn University, Auburn, AL, USA (2000)
  18. S. G. Kazarian, R. B. Gupta, M. J. Clarke, K. P. Johnston, and M. Poliakoff, J. Am. Chem. Soc., 115, 11099 (1993) https://doi.org/10.1021/ja00077a006
  19. R. B. Gupta and R. L. Brinkley, AIChE J, 44, 207 (1998) https://doi.org/10.1002/aic.690440122