The Characteristics of Titanium Oxide Films Deposited by the Nozzle-type HCP RT-MOCVD

노즐 형태 HCP RT-MOCVD에 의해 증착된 티타늄 산화막 특성

  • Jung, Il-hyun (Department of Chemical Engineering, Dankook University)
  • 정일현 (단국대학교 화학공학과)
  • Received : 2006.01.13
  • Accepted : 2006.03.16
  • Published : 2006.04.10

Abstract

Titanium oxide films were deposited by the nozzle type HCP RT-MOCVD for the application of metal-oxide films. In the case of TTNB, after depositing films, films must be annealed at a proper temperature, but in the case of titanium ethoxide, titanium oxide films could be directly deposited by titanium ethoxide without general annealing. We could confirm that ratio of O to Ti in the films was about 2 : 1 at RF-power of 240 watt, distance between cathode and substrate of 3 cm, deposition time of 20 min, and ratio of Ar to $O_2$ of 1 : 1. Therefore, we could obtain the titanium oxide film deposited by the nozzle type HCP RT-MOCVD without an annealing process and could apply in the metal-oxide deposition process at a low temperature.

Acknowledgement

Supported by : 단국대학교

References

  1. M. Nomura, B. Meester, J. Schoonman, F. Kapteijn, and J. A. Moulijn, Separation and Purification Technology, 32, 387 (2003) https://doi.org/10.1016/S1383-5866(03)00070-4
  2. G. Giavaresi, L. Ambrosio, G. A. Battiston, U. Casellato, R. Gerbasi, M. Finia, N. N. Aldini, L. Martini, L. Rimondini, and R. Giardino, Biomaterials, 25, 5583 (2004) https://doi.org/10.1016/j.biomaterials.2004.01.017
  3. C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. Non-Cryst. Sol., 100, 65 (1988) https://doi.org/10.1016/0022-3093(88)90007-5
  4. C. Alves Jr., C.L.B. Guerra Neto, G.H.S. Morais, C. F. da Silva, and V. Hajek, Surface and Coatings Technology, 194, 196 (2005) https://doi.org/10.1016/j.surfcoat.2004.10.009
  5. J. Cuomo, Handbook of Thin Film Process Technology, eds. D. A. Glocker and S. L. Shah, IOP Publishers, A3.1:12-21 (1995)
  6. S. Doeuff. M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Sol., 89, 206 (1987) https://doi.org/10.1016/S0022-3093(87)80333-2
  7. K. Lefki, P. Muret, E. Bustarret, N. Boutarek, R. Madar, J. Chevrier, J. Derrien, and M. Brunel, Solid State Commun., 80, 791 (1991) https://doi.org/10.1016/0038-1098(91)90509-T
  8. K. S. Kim and I. L. Jung, J. Korean Ind. Eng. Chem., 14, 1081 (2003)
  9. M. P. Zheng, M. Y Gu, Y. P. Jin, H. H. Wang, P. F. Zu, P. Tao, and J. B. He, Materials Science and Engineering, B87, 197 (2001)
  10. J. C. Yu, H. Y. Tang, J. Yu, H. C. Chan, L. Zahng, Y. Xie, H. Wang, and S. P. Wong, J. Photochem. and Phtobio. A: chemistry, 153, 211 (2002) https://doi.org/10.1016/S1010-6030(02)00275-7
  11. J. S. Dalton, P. A. Janes, N. G. Jones, J. A. Nicholson, K. R. Hallam, and G. C. Allen, Environmental Pollution, 120, 415 (2002) https://doi.org/10.1016/S0269-7491(02)00107-0