Properties of Capacity on Carbon Electrode in EC:MA Electrolytes - I. Effect of Mixing Ratio on the Electrochemical Properties -

EC:MA 혼합전해질에서 카본 전극의 용량 특성 - I. 전기화학적 특성에 대한 혼합비의 영향 -

  • Park, Dong-Won (Department of Chemistry & RRC/HECS & IBS, Chonnam National University) ;
  • Kim, Woo-Seong (R&D Center, DaeJung Chemicals & Metals Co., LTD) ;
  • Son, Dong-Un (Department of Chemistry & RRC/HECS & IBS, Chonnam National University) ;
  • Kim, Sung-Phil (Department of Chemistry & RRC/HECS & IBS, Chonnam National University) ;
  • Choi, Yong-Kook (Department of Chemistry & RRC/HECS & IBS, Chonnam National University)
  • 박동원 (전남대학교 자연과학대학 화학과 & RRC/HECS & IBS) ;
  • 김우성 (대정화금(주) 중앙연구소) ;
  • 손동언 (전남대학교 자연과학대학 화학과 & RRC/HECS & IBS) ;
  • 김성필 (전남대학교 자연과학대학 화학과 & RRC/HECS & IBS) ;
  • 최용국 (전남대학교 자연과학대학 화학과 & RRC/HECS & IBS)
  • Received : 2005.12.27
  • Accepted : 2006.03.16
  • Published : 2006.04.10

Abstract

The choice of solvents for electrolytes solutions is very important to improve the characteristics of charge/discharge in the Li-ion battery system. Such solvent systems have been widely investigated as electrolytes for Li-ion batteries. In this paper, the electrochemical properties of the solid electrolyte interphase film formed on carbon anode surface and the solvent decomposition voltage in 1 M LiPF6/EC:MA(x:y) electrolyte solutions prepared from the various mixing volume ratios are investigated by chronopotentiometry, cyclic voltammetry, and impedance spectroscopy. As a result, the solvent decomposition voltages are varied with the ionic conductivity of the electrolyte. Electrochemical properties of the passivation film were different, which are dependent on the mixture ratio of the solvents. Therefore, the most appropriate mixing ratio of EC and MA as a solvent in 1 M $LiPF_6/(EC+MA)$ system for Li-ion battery is approximately 1:3 (EC:MA, volume ratio).

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Extended Abstracts, 8th Int. Meeting on Lithium Batteries, Nagoya, Japan, June (1996)
  2. K. Nishio, S. Yoshimura, and T. Saito, J. Power Sources, 55, 115 (1995) https://doi.org/10.1016/0378-7753(94)02168-3
  3. Y.-K. Choi, J.-G. Park, K.-I. Chung, B.-D. Choi, and W.-S. Kim, Microchem J., 64, 227 (2000) https://doi.org/10.1016/S0026-265X(00)00016-3
  4. D. Aurbach and E. Granot, Electrochim. Acta, 42, 697 (1997) https://doi.org/10.1016/S0013-4686(96)00231-9
  5. M. W. Wagner, Electrochim. Acta, 42, 1623 (1997) https://doi.org/10.1016/S0013-4686(96)00323-4
  6. J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, J. Power Sources, 54, 228 (1995) https://doi.org/10.1016/0378-7753(94)02073-C
  7. M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki, and Z. Ogumi, J. Power Sources, 68, 221 (1997) https://doi.org/10.1016/S0378-7753(96)02555-4
  8. M. Ue and S. Mori, J. Electrochem. Soc., 142, 2577 (1995) https://doi.org/10.1149/1.2050056
  9. K.-I. Chung, M.-W. Chung, W.-S. Kim, S.-K. Kim, Y.-E. Sung, and Y.-K. Choi, Bull. Korean Chem. Soc., 22, 189 (2001)
  10. B. V. Ratnakumar, M. C. Smart, and S. Surampudi, J. Power Sources, 97, 139 (2001)
  11. D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, and H. Yamin, J. Electrochem. Soc., 142, 2882 (1995) https://doi.org/10.1149/1.2048659
  12. R. L. Deutscher, T. M. Florence, and R. Woods, J. Power Sources, 55, 41 (1995) https://doi.org/10.1016/0378-7753(94)02166-Z
  13. V. Manev, B. Banov, A. Momchilov, and A. Nassalevska, J. Power Sources, 57, 99 (1995) https://doi.org/10.1016/0378-7753(95)02227-9
  14. L. A. Dominey, New Materials, Developments and Perspectives, ed. Pistoia, G., Elsevier, Amsterdam, ch. 4 (1994)
  15. B. Markovsky, Mikhail D. Levi, and D. Aurbach, Electrochim. Acta, 43, 2287 (1998) https://doi.org/10.1016/S0013-4686(97)10172-4