Vasoactive Intestinal Polypeptide Inhibits Pacemaker Activity via the Nitric Oxide-cGMP-Protein Kinase G Pathway in the Interstitial Cells of Cajal of the Murine Small Intestine

  • Kim, Byung Joo (Department of Physiology and Biophysics, Seoul National University College of Medicine) ;
  • Lee, Jae Hwa (Department of Physiology and Biophysics, Seoul National University College of Medicine) ;
  • Jun, Jae Yeoul (Department of Physiology, Chosun University College of Medicine) ;
  • Chang, In Youb (Department of Physiology, Chosun University College of Medicine) ;
  • So, Insuk (Department of Physiology and Biophysics, Seoul National University College of Medicine) ;
  • Kim, Ki Whan (Department of Physiology and Biophysics, Seoul National University College of Medicine)
  • Received : 2005.09.07
  • Accepted : 2006.05.01
  • Published : 2006.06.30


Interstitial cells of Cajal (ICCs) are pacemaker cells that activate the periodic spontaneous depolarization (pacemaker potentials) responsible for the production of slow waves in gastrointestinal smooth muscle. The effects of vasoactive intestinal polypeptide (VIP) on the pacemaker potentials in cultured ICCs from murine small intestine were investigated by whole-cell patch-clamp techniques. Addition of VIP (50 nM-$1{\mu}M$) decreased the amplitude of pacemaker potentials and depolarized resting membrane potentials. To examine the type of receptors involved in ICC, we examined the effects of the $VIP_1$ agonist and found that it had no effect on pacemaker potentials. Pretreatment with $VIP_1$ antagonist ($1{\mu}M$) for 10 min also did not block the VIP (50 nM)-induced effects. On the other hand exposure to 1H-(1,2,4)oxadiazolo(4,3-A)quinoxalin-1-one (ODQ, $100{\mu}M$), an inhibitor of guanylate cyclase, prevented VIP inhibition of pacemaker potentials. Similarly KT-5823 ($1{\mu}M$) or RP-8-CPT-cGMPS ($10{\mu}M$), inhibitors of protein kinase G (PKG) blocked the effect of VIP (50 nM) on pacemaker potentials as did N-nitro-L-arginine (L-NA, $100{\mu}M$), a non-selective nitric oxide synthase (NOS) inhibitor. These results imply that the inhibition of pacemaker activity by VIP depends on the NO-cGMP-PKG pathway.


cGMP;Interstitial Cells of Cajal;Nitric Oxide;Protein Kinase G;Vasoactive Intestinal Polypeptide


Supported by : Korea Science and Engineering Foundation


  1. Bitar, K. N., Said, S. I., Weir, G. C., Saffori, B., and Makhlouf, G. M. (1980) Neural release of vasoactive intestinal peptide from the gut. Gastroenterology 79, 1288-1294
  2. Furness, J. B., Pompolo, S., Shuttleworth, C. W., and Burleigh, D. E. (1992) Light- and electron-microscopic immunochemical analysis of nerve fibre types innervating the taenia of the guinea-pig caecum. Cell Tissue Res. 270, 125-137
  3. Grider, J. R., Murthy, K. S., Jin, J. G., and Makhlouf, G. M. (1992) Stimulation of nitric oxide from muscle cells by VIP: prejunctional enhancement of VIP release. Am. J. Physiol. 262, 774-778
  4. Jun, J. Y., Choi, S., Chang, I. Y., Yoon, C. K., Jeong, H. G., et al. (2005) Deoxycholic acid inhibits pacemaker currents by activating ATP-dependent $K^{+}$ channels through prostaglandin E2 in interstitial cells of Cajal from the murine small intestine. Br. J. Pharmacol. 144, 242-251
  5. Kimura, C., Ohkubo, S., and Ogi, K. (1990) A novel peptide which stimulates adenylate cyclase: molecular cloning and characterisation of the ovine and human cDNAs. Biochem. Biophys. Res. Commun. 166, 81-89
  6. Li, C. G. and Rand, M. J. (1990) Nitric oxide and vasoactive intestinal polypeptide mediate non-adrenergic non-cholinergic inhibitory transmission to stomach muscle of rat gastric fundus. Eur. J. Pharmacol. 191, 303-309
  7. Maggi, C. A., Zagorodnyuk, V., and Giuliani, S. (1994) Tachykinin NK3 receptor mediates NANC hyperpolarization and relaxation via nitric oxide release in the circular muscle of the guinea-pig colon. Regul. Pept. 53, 259-274
  8. Moncada, S., Palmer, R. M. J., and Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142
  9. Murthy, K. S., Zhang, K. M., Jin, J. G., Grider, J. R., and Makhlouf, G. M. (1993) VIP-mediated G protein-coupled Ca2+ influx activates a constitutive NOS in dispersed gastric muscle cells. Am. J. Physiol. 265, G660-G671
  10. Said, S. I. and Mutt, V. (1970) Polypeptide with broad biological activity: isolation from small intestine. Science 169, 1217-1218
  11. Wolin, M. S., Wood, K. S., and Ignarro, L. J. (1982) Guanylate cyclase from bovine lung. A kinetic analysis of the regulation of the purified soluble enzyme by protoporphyrin IX, heme, and nitrosyl-heme. J. Biol. Chem. 257, 13312-13320
  12. Fahrenkrug, J. (1993) Transmitter role of vasoactive intestinal peptide. Pharrnacol. Toxicol. 72, 354-363
  13. Furchgott, R. F. and Zawadzki, J. V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-376
  14. Jun, J. Y., Choi, S., Yeum, C. H., Chang, I. Y., You, H. J., et al. (2004b) Substance P induces inward current and regulates pacemaker currents through tachykinin NK1 receptor in cultured interstitial cells of Cajal of murine small intestine. Eur. J. Pharmacol. 495, 35-42
  15. Lincoln, T. M. and Cornwell, T. L. (1993) Intracellular cyclic GMP receptor proteins. FASEB J. 7, 328-338
  16. Ordog, T., Ward, S. M., and Sanders, K. M. (1999) Interstitial cells of Cajal generate electrical slow waves in the murine stomach. J. Physiol. 518, 257-269
  17. Szurszewsik, J. H. (1987) Electrical basis for gastrointestinal motility; in Prostaglandins and the Gastrointestinal Tract, Johnson, L. R. (ed.), p. 383, Raven Press, New York
  18. Ward, S. M., Burns, A. J., Torihashi, S., and Sanders, K. M. (1994) Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J. Physiol. 480, 91-102
  19. Gustafsson, B. I. and Delbro, D. S. (1993) Tonic inhibition of small intestinal motility by nitric oxide. J. Auton. Nerv. Syst. 44, 179-187
  20. Allescher, H. D., Lu, S., Daniel, E. E., and Classen, M. (1993) Nitric oxide as putative nonadrenergic noncholinergic inhibitory transmitter in the opossum sphincter of Oddi. Can. J. Physiol. Pharmacol. 71, 525-530
  21. Goyal, R. K., Rattan, S., and Said, S. I. (1980) VIP as a possible neurotransmitter of non-cholinergic non-adrenergic inhibitory neurones. Nature 288, 378-380
  22. Bult, H., Boeckxstaens, G. E., Pelckmans, P. A., Jordaens, F. H., Van Maercke, Y. M., et al. (1990) Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345, 346-347
  23. Gozes, I. and Brenneman, D. E. (1989) VIP: Molecular biology and neurobiolodcal function. Mol. Neurobiol. 3, 201-236
  24. Langton, P., Ward, S. M., Carl, A., Nerell, M. A., and Sanders, K. M. (1989) Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc. Natl. Acad. Sci. USA 86, 7280-7284
  25. Bayguinov, O., Keef, K. D., Hagen, B., and Sanders, K. M. (1999) Parallel pathways mediate inhibitory effects of vasoactive intestinal polypeptide and nitric oxide in canine fundus. Br. J. Pharmacol. 126, 1543-1552
  26. Huisinga, J. D., Thuneberg, L., Kluppel, M., Malysz, J., Mikkelsen, H. B., et al. (1995) W/kit gene required for intestinal pacemaker activity. Nature 373, 347-352
  27. Grider, J. R., Cable, M. B., Said, S. I., and Makhlouf, G. M. (1985) Vasoactive intestinal peptide as a neural mediator of gastric relaxation. Am. J. Physiol. 248, 73-78
  28. Grider, J. R. (1993) Interplay of VIP and nitric oxide in regulation of the descending relaxation phase of peristalsis. Am. J. Physiol. 264, 334-340
  29. Murad, F., Mittal, C. K., Arnold, W. P., Katsuki, S., and Kimura, H. (1978) Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv. Cyclic Nucleotide Res. 9, 145-158
  30. Sreedharan, S. P., Patel, D. R., Xia, M., Ichikawa, S., and Goetzl, E. J. (1994) Human vasoactive intestinal peptide 1 receptors expressed by stable transfectants couple to two distinct signaling pathways. Biochem. Biophys. Res. Commun. 203, 141-148
  31. Kishi, M., Takeuchi, T., Katayama, H., Yamazaki, Y., Nishio, H., et al. (2000) Involvement of cyclic AMP - PKA pathway in VIP-induced, charybdotoxin-sensitive relaxation of longitudinal muscle of the distal colon of Wistar-ST rats. Br. J. Pharmacol. 129, 140-146
  32. Cha, S. H., Park, J. E., Kwak, J. O., Kim, H. W., Kim, J. B., et al. (2005) Attenuation of extracellular acidic pH-induced cyclooxygenase-2 expression by nitric oxide. Mol. Cells 19, 232-238
  33. Lutz, E. M., Sheward, W. J., West, J. M., Morrow, J. A., Fink, G., et al. (1993) The VIP 2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett. 334, 3-8
  34. Murthy, K. S. and Makhlouf, G. M. (1994) Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide-dependent activation of membrane-bound NO synthase in smooth muscle mediated by pertussis toxin-sensitive Gi1-2. J. Biol. Chem. 269, 15977-15980
  35. Serge, G. V. and Goldring, S. R. (1993) Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagon like peptide, growth hormone-releasing hormone, and glucagon belong to a newly discovered G-protein-linked receptor family. Trends Endocrinol. Metab. 4, 309-314
  36. Goto, K., Matsuoka, S., and Noma, A. (2004) Two types of spontaneous depolarizations in the interstitial cells freshly prepared from the murine small intestine. J. Physiol. 559, 411-422
  37. Ishihara, T., Shigemoto, R., Mori, K., Takahashi, K., and Nagata, S. (1992) Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 8, 811-819
  38. Lee, J. E. and Jeon, C. J. (2005) Immunocytochemical localization of nitric oxide synthase-containing neurons in mouse and rabbit visual cortex and co-localization with calciumbinding proteins. Mol. Cells 19, 408-417
  39. Murthy, K. S. and Makhlouf, G. M. (1995) Interaction of cAkinase and cG-kinase in mediating relaxation of dispersed smooth muscle cells. Am. J. Physiol. 268, 171-180
  40. Epperson, A., Hatton, W. J., Callaghan, B., Doherty, P., Walker, R. L., et al. (2000) Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am. J. Physiol. Cell Physiol. 279, C529-539
  41. Gruetter, C. A., Gruetter, D. Y., Lyon, J. E., Kadowitz, P. J., and Ignarro, L. J. (1981) Relationship between cyclic guanosine 3′:5′-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin. J. Pharmacol. Exp. Ther. 219, 181-186
  42. Jun, J. Y., Choi, S., Yeum, C. H., Chang, I. Y., Park, C. K., et al. (2004a) Noradrenaline inhibits pacemaker currents through stimulation of beta 1-adrenoceptors in cultured interstitial cells of Cajal from murine small intestine. Br. J. Pharmacol. 141, 670-677
  43. Inagaki, N., Yoshida, H., Mizuta, M., Mizuno, M., Mizuno, N., et al. (1994) Cloning and functional characterization of a third pituitary adenylate cyclase-activating polypeptide receptor subtype expressed in insulin-secreting cells. Proc. Natl. Acad. Sci. USA 91, 2679-2683
  44. Sanders, K. M. (1996) A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111, 492-515
  45. Harmar, T. and Lutz, E. (1994) Multiple receptors for PACAP and VIP. Trends Pharmacol. Sci. 15, 97-99
  46. Jin, J. G., Murthy, K. S., Grider, J. R., and Makhlouf, G. M. (1993) Activation of distinct cAMP- and cGMP-dependent pathways by relaxant agents in isolated gastric muscle cells. Am. J. Physiol. 264, 470-477