DOI QR코드

DOI QR Code

Correlations between Heterozygosity at Microsatellite Loci, Mean d2 and Body Weight in a Chinese Native Chicken

  • Liu, G.Q. (College of Animal Science and Technology, Yangzhou University) ;
  • Jiang, X.P. (College of Animal Science and Technology, Yangzhou University) ;
  • Wang, J.Y. (College of Animal Science and Technology, Yangzhou University) ;
  • Wang, Z.Y. (College of Animal Science and Technology, Yangzhou University)
  • Received : 2006.02.06
  • Accepted : 2006.04.13
  • Published : 2005.12.01

Abstract

A total of two hundred twenty eight half-sib chickens were scored for allele size at 20 microsatellite loci to estimate individual heterozygosity and mean $d^2$. The averages of microsatellite heterozygosity, allele per locus and mean $d^2$ were 0.39, 3.6 and 49, respectively. The body weight was measured biweekly from birth to twelve weeks of age. Gompertz function was assumed to simulate body weight and to estimate the growth model parameters. Due to sex effect on body weight, the regression of body weight on heterozygosity as well as on mean $d^2$ in males and females was analyzed separately in the present study. Positive correlations were found between microsatellite heterozygosity and body weight in males and females (p<0.05). Positive correlation also observed between individual heterozygosity and simulated maximum daily gain estimated from Gompertz function in female chickens (p<0.05). There were no significant correlations between mean $d^2$ and body weight. The results suggest that local effect hypothesis could explain the correlations between heterozygosity and fitness-related traits in the domesticated chicken population, rather than the general effect hypothesis does.

Keywords

Microsatellite Heterozygosity;Mean $d^2$;Body Weight;Chicken

References

  1. Balloux, F., W. Amos and T. Coulson. 2004. Does heterozygosity estimate inbreeding in real populations? Mol. Ecol. 13:3021- 3031 https://doi.org/10.1111/j.1365-294X.2004.02318.x
  2. Borrell, Y. J., H. Pineda, I. McCarthy, E. Vazquez, J. A. Sanchez and G. B. Lizana. 2004. Correlations between fitness and heterozygosity at allozyme and microsatellite loci in the Atlantic salmon, Salmo salar L. Heredity 92:585-593 https://doi.org/10.1038/sj.hdy.6800477
  3. Coltman, D. W., W. D. Bowen and J. M. Wright. 1998. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc. R. Soc. Lond. B 265:803-809
  4. David, P., B. Deley, P. Berthou and P.Jarne. 1995. Alternative models for allozyme-associated heterosis in the marine bivalve Spisula ovalis. Genet. 139:1719-1726
  5. Houle, D. 1989. Allozyme-associated heterosis in Drosophila melanogaster. Genet. 123:789-801
  6. Jiang, X. P., G. Q. Liu and Y. Z. Xiong. 2005. Investigation of Gene and Microsatellite Heterozygosities Correlated to Growth Rate in the Chinese Meishan Pig. Asian-Aust. J. Anim. Sci. 18:927-932 https://doi.org/10.5713/ajas.2005.927
  7. Leary, R. F. 1987. Differences in inbreeding coefficients do not explain the associations between heterozygosity at allozyme loci and developmental stability in rainbow trout. Evolution 41:1413-415 https://doi.org/10.2307/2409107
  8. Rowe, G. and T. J. C. Beebee. 2001. Fitness and microsatellite diversity estimates were not correlated in two outbreed anuran populations. Heredity 87:558-565 https://doi.org/10.1046/j.1365-2540.2001.00944.x
  9. Shikano, T. and N. Taniguchi. 2002. Relationships between genetic variation measured by microsatellite DNA markers and a fitness-related trait in the guppy (Poecilia reticulata). Aquac. 209:77-90 https://doi.org/10.1016/S0044-8486(01)00812-2
  10. Smouse, P. E. 1986. The fitness consequences of multiple-locus heterozygosity under the multiplicative overdominance and inbreeding models. Evolution 40:946-957 https://doi.org/10.2307/2408755
  11. Thelen, G. C. and F. W. Allendorf. 2001. Heterozygosity-fitness correlations in rainbow trout: effects of allozyme loci or associative overdominance? Evolution 55:1180-1187 https://doi.org/10.1111/j.0014-3820.2001.tb00637.x
  12. Tsitrone, A., F. Rousset and P. David. 2001. Heterosis, marker mutational processes and population inbreeding history. Genet. 159:1845-1859
  13. Hansson, B. and L. Westerberg. 2002. On the correlation between heterozygosity and fitness in natural populations. Mol. Ecol. 11:2467-2474 https://doi.org/10.1046/j.1365-294X.2002.01644.x
  14. Jarne, P. and P. J. L. Lagoda. 1996. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11:424- 429 https://doi.org/10.1016/0169-5347(96)10049-5
  15. Slate, J., P. David, K. G. Dodds, B. A. Veenvliet, B. C. Glass, T. E. Broad and J. C. McEwan. 2004. Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255-265 https://doi.org/10.1038/sj.hdy.6800485
  16. Markert, J. A., P. R. Grant, B. R. Grant, L. F. Keller, J. L. Coombs and K. Petren. 2004. Neutral locus heterozygosity, inbreeding, and survival in Darwin's ground finches (Geospiza fortis and G. scandens). Heredity 92:306-315 https://doi.org/10.1038/sj.hdy.6800409
  17. Zouros, E. 1993. Associative overdominance: evaluating the effects of inbreeding and linkage disequilibrium. Genetica 89:35-46 https://doi.org/10.1007/BF02424504
  18. Coulson, T. N., J. M. Pemberton, S. D. Albon, M. Beaumont, T. C. Marshall, J. Slate, F. E. Guinness and T. H. Clutton-Brock. 1998. Microsatellites reveal heterosis in red deer. Proc. R. Soc. Lond. B 265:489-495
  19. Curik, I., P. Zechner, J. Solkner, R. Achmann, I. Bodo, P. Dovc, T. Kavar, E. Marti and G. Brem. 2003. Inbreeding, microsatellite heterozygosity, and morphological traits in Lipizzan horses. J. Hered. 94:125-132 https://doi.org/10.1093/jhered/esg029
  20. Jiang, X. P., Y. Z. Xiong, G. Q. Liu, C. Y. Deng and Y. C. Qu. 2003. Effects of individual gene heterozygosity on growth traits in swine. Acta Genetica Sinica 30:431-436
  21. Tu, Y. J., K. W. Chen, S. J. Zhang, Q. P. Tang, Y. S. Gao and N. Yang. 2006. Genetic diversity of 14 indigenous grey goose breeds in China based on microsatellite markers. Asian-Aust. J. Anim. Sci. 19:1-8
  22. Wang, X., H. H. Cao, S. M. Geng and H. B. Li. 2004. Genetic diversity of 10 indigenous pig breeds in China by using microsatellite markers. Asian-Aust. J. Anim. Sci. 17:1219- 1226 https://doi.org/10.5713/ajas.2004.1219
  23. Bierne, N., S. Launey, Y. Naciri-Graven and F. Bonhomme. 1998. Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genet. 148:1893-1906
  24. Zhang, J. H., Y. Z. Xiong and C. Y. Deng. 2005. Correlations of genic heterozygosity and variances with heterosis in a pig population revealed by microsatellite DNA marker. Asian-Aust. J. Anim. Sci. 18:620-625 https://doi.org/10.5713/ajas.2005.620
  25. Pogson, G. H. and S. E. Fevolden. 1998. DNA heterozygosity and growth rate in the Atlantic cod Gadus morhua. Evolution 52:915-920 https://doi.org/10.2307/2411287
  26. Pujolar, J. M., G. E. Maes, C. Vancoillie and F. A. M. Volckaert. 2005. Growth rate correlates to individual heterozygosity in the European eel, Anguilla Anguilla L. Evolution 59:189-199
  27. Coltman, D. W. and J. Slate. 2003. Microsatellite measures of inbreeding: A meta-analysis. Evolution 57:971-983 https://doi.org/10.1111/j.0014-3820.2003.tb00309.x
  28. David, P. 1998. Heterozygosity-fitness correlations: new perspectives on old problems. Heredity 80:531-537 https://doi.org/10.1046/j.1365-2540.1998.00393.x
  29. Hughes, C. R. and D. C. Queller. 1993. Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism. Mol. Ecol. 2:131-137 https://doi.org/10.1111/j.1365-294X.1993.tb00102.x
  30. Pogson, G. H. and E. Zouros. 1994. Allozyme and RFLP heterozygosities as correlates of growth rate in the Scallop Placopecten magellanicus: a test of the associative overdominance hypothesis. Genet. 137:221-231

Cited by

  1. No risk, no gain: effects of crop raiding and genetic diversity on body size in male elephants vol.22, pp.3, 2011, https://doi.org/10.1093/beheco/arr016
  2. ) Fawns vol.37, pp.1, 2012, https://doi.org/10.3106/041.037.0102
  3. Investigation of individual heterozygosity correlated to growth traits in Tongshan Black-boned goat vol.40, pp.11, 2013, https://doi.org/10.1007/s11033-013-2717-x