IR Study on the Adsorption of Carbon Monoxide on Silica Supported Ruthenium-Nickel Alloy

실리카 지지 루테늄-니켈 합금에 있어서 일산화탄소의 흡착에 관한 IR 연구

  • 박상윤 (울산대학교 자연과학대학 화학과) ;
  • 윤동욱 (울산대학교 자연과학대학 화학과)
  • Received : 2005.12.27
  • Accepted : 2006.06.26
  • Published : 2006.08.10

Abstract

We have investigated adsorption and desorption properties of CO adsorption on silica supported Ru/Ni alloys at various Ru/Ni mole content ratio as well as CO partial pressures using Fourier transform infrared spectrometer (FT-IR). For Ru-$SiO_{2}$ sample, four bands were observed at $2080.0cm^{-1}$, $2021.0{\sim}2030.7cm^{-1}$, $1778.9{\sim}1799.3cm^{-1}$, $1623.8cm^{-1}$ on adsorption and three bands were observed at $2138.7cm^{-1}$, $2069.3cm^{-1}$, $1988.3{\sim}2030.7cm^{-1}$ on vacumn desorption. For Ni-$SiO_{2}$ sample, four bands were observed at $2057.7cm^{-1}$, $2019.1{\sim}2040.3cm^{-1}$, $1862.9{\sim}1868.7cm^{-1}$, $1625.7cm^{-1}$ on adsorption and two bands were observed at $2009.5{\sim}2040.3cm^{-1}$, $1828.4{\sim}1868.7cm^{-1}$ on vacumn desorption. These absorption bands correspond with those of the previous reports approximately. For Ru/Ni(9/1, 8/2, 7/3, 6/4, 5/5; mole content ratio)-$SiO_{2}$ samples, three bands were observed at $2001.8{\sim}2057.7cm^{-1}$, $1812.8{\sim}1926.5cm^{-1}$, $1623.8{\sim}1625.7cm^{-1}$ on adsorption and three bands were observed at $2140.6cm^{-1}$, $2073.1cm^{-1}$, $1969.0{\sim}2057.7cm^{-1}$ on vacumn desorption. The spectrum pattern observed for Ru/Ni-$SiO_{2}$ sample at 9/1 Ru/Ni mole content ratio on CO adsorption and on vacumn desorption is almost like the spectrum pattern observed for Ru-$SiO_{2}$ sample. But the spectrum patterns observed for Ru/Ni-$SiO_{2}$ samples under 8/2 Ru/Ni mole content ratio on CO adsorption and vacumn desorption are almost like the pattern observed for $Ni-SiO_{2}$ sample. It may be suggested surfaces of alloy clusters on the Ru/Ni-$SiO_{2}$ samples contain more Ni components than the mole content ratio of the sample considering the above phenomena. With Ru/Ni-$SiO_{2}$ samples the absorption band shifts may be ascribed to variations of surface concentration, strain variation due to atomic size difference, variation of bonding energy and electronic densities, and changes of surface geometries according to surface concentration variation. Studies for CO adsorption on Ru/Ni alloy cluster surface by LEED and Auger spectroscopy, interation between Ru/Ni alloy cluster and $SiO_{2}$, and MO calculation for the system would be needed to look into the phenomena.

Acknowledgement

Supported by : 울산대학교

References

  1. J. M. rynkowski, T. Paryjczak, and M. Lenik, Applied Catalysis A: General, 126, 257 (1995) https://doi.org/10.1016/0926-860X(95)00035-6
  2. G. Predieri, P. Moggi, S. Papadopulos, A. Armigliato, S. Bigi, and E. Sappa, J. Chem. Soc., Chem. Commun., 1736 (1990)
  3. A. Armigliato, S. Bigi, P. Moggi, S. Papadopulos, G. Predieri, G. Salviati, and E. Sappa, Mater. Chem. Phys., 29, 251 (1991) https://doi.org/10.1016/0254-0584(91)90021-L
  4. M. Vrinat, M. Lacix, M. Breysse, A. Bellaloui, L. Mosoni, and M. Roubin, Proc. 9th International Congress on Catalysis, Calgary, 1988, eds. M. J. Phillis and M. Ternan, 1, 88 The Chemical Institute of Canada, Ottawa (1988)
  5. M. Cerro-Alarcon, A. Moroto-Valiente, I. Rodrigues-Ramos, and A. Guerrero-Ruis, Applied Catalysis A: General, 275, 257 (2004) https://doi.org/10.1016/j.apcata.2004.07.039
  6. A. Ishihara, E. W. Quian, N. Finahari, I. P. Sutrisuna, and T. Kabe, Fuel, 84, 1462 (2005)
  7. Y. J. Chabal, Surface Science Reports, 8, 211 (1988) https://doi.org/10.1016/0167-5729(88)90011-8
  8. M. A. Vannice, J. Catal., 37, 449 (1975) https://doi.org/10.1016/0021-9517(75)90181-5
  9. L. Lynds, Spectrochem. Acta, 20, 1369 (1964) https://doi.org/10.1016/0371-1951(64)80117-X
  10. R. A. Dalla Betta, J. Phys. Chem., 79, 2519 (1975) https://doi.org/10.1021/j100590a015
  11. H. Pnur, D. Menzel, F. M. Hoffman, A. Ortega, and A. M. Bradshaw, Surface Science, 93, 431 (1980) https://doi.org/10.1016/0039-6028(80)90275-7
  12. K. L. Kostov, H. Rauscher, and D. Menzel, Surface Science, 278, 62 (1992) https://doi.org/10.1016/0039-6028(92)90584-S
  13. F. M. Hoffman and M. D. Weisel, Surface Science, 253, 59 (1988) https://doi.org/10.1016/0039-6028(91)90581-C
  14. R. P. Eischens, S. A. Francis, and W. A. Pliskin, J. Phys. Chem., 60, 194 (1956) https://doi.org/10.1021/j150536a015
  15. S. S. Andersson, Solid St. Comm., 21, 75 (1977) https://doi.org/10.1016/0038-1098(77)91482-X
  16. T. Fleisch, G. L. Ott, W. N. Delgass, and N. Winograd, Surface Science, 81, 1 (1988) https://doi.org/10.1016/0039-6028(79)90501-6
  17. W. Erley, H. Ibach, S. Lewald, and H. Wagner, Surface Science, 83, 585 (1979) https://doi.org/10.1016/0039-6028(79)90065-7
  18. J. W. Lee, S. Chang, H. Pak, K. J. Shin, M. Kim, and W. I. Chung, Bull. Korean Chem. Soc., 9, 137 (1988)
  19. R. Raval, Surface Science, 331, 1 (1995) https://doi.org/10.1016/0039-6028(95)00126-3
  20. N. Sheppard and T. T. Nguyen, Advances in infrared and raman spectroscopy, eds. R. J. H. Clark and R. E. Hester, 5, 67, Heydon, London (1978)
  21. M. Liao, C. R. Cabrera, and Y. Ishikawa, Surface Science, 445, 267 (1988)
  22. Mary F. Brown and Richard D. Gonzalez, J. Phys. Chem., 80, 1731 (1976) https://doi.org/10.1021/j100556a017
  23. R. A. Campbell, J. Rodrigez, and D. W. Goodman, Surface Science, 256, 272 (1991) https://doi.org/10.1016/0039-6028(91)90870-X
  24. G. Blyholder and M. C. Allen, J. Am. Chem. Soc., 79, 756 (1975) https://doi.org/10.1021/ja01560a076
  25. H. Aizawa and S. Tsuneyuki, Surface Science, 399, L364 (1998) https://doi.org/10.1016/S0039-6028(98)00042-9
  26. C. W. Olsen and R. I. Masel, Surface Science, 201, 444 (1988) https://doi.org/10.1016/0039-6028(88)90496-7
  27. P. Hollins, Surface Science Reports, 16, 51 (1992) https://doi.org/10.1016/0167-5729(92)90008-Y
  28. P. S. Bagus and W. M. Muller, Chem. Phys. Letters, 115, 540 (1985) https://doi.org/10.1016/0009-2614(85)85189-7