Expression and Purification of Recombinant Human Interferon-gamma Produced by Escherichia coli

대장균이 생산한 재조합 인체 감마인터페론의 발현과 정제

  • Published : 2006.06.28


For the production of the recombinant human interferon-gamma(rhIFN-${\gamma}$) in Escherichia coli, human glucagon and ferritin heavy chain were used as fusion partners. Even though rhIFN-${\gamma}$ is expressed as an inclusion body form in E. coli because of strong hydrophobicity of itself, over 50% of fused rhIFN-${\gamma}$ was expressed as soluble form in E. coli $Origami^{TM}$(DE3) harboring pT7FH(HE)-IFN-${\gamma}$ which encodes ferritin heavy chain-fused rhIFN-${\gamma}$. In the case of using glucagon-ferritin heavy chain hybrid mutant as a fusion partner, 6X His-tag was additionally introduced to N-terminus of GFHM(HE)-IFN-${\gamma}$ for enhancing purification yields of rhIFN-${\gamma}$. Fusion protein HGFHM(HE)-IFN-${\gamma}$ with two 6X His-tag was more effectively bound to Ni-NTA agarose bead than GFHM(HE)-IFN-${\gamma}$ with a 6X His-tag. rhIFN-${\gamma}$ was completely purified from enterokinase-treated HGFHM(HE)-IFN-${\gamma}$ by Ni-NTA affinity column. For high-level production of rhIFN-${\gamma}$, glucose was used as the sole carbon source with simple exponential feeding rate($2.4{\sim}7.2g/h$) in fed-batch process. The effective lactose concentration for the expression of the rhIFN-${\gamma}$ was $10{\sim}20mM$. Under the fed-batch culture conditions, rhIFN-${\gamma}$ production yield reached 11 g DCW/L for 6 hours after lactose induction.


  1. Isaacs, A., J. Lindemann, and R. C. Valentine (1957), Virus interference. II. Some properties of interferon, Proc. Roy. Soc. London (Biol). 147(B), 268-273
  2. Loosdrecht, van de A., G. J. Ossenkoppele, R. H. Beelen, M. G. Broekhoven, M. M. Langenhuijsen (1992), Role of interferon gamma and tumour necrosis factor alpha in monocyte-mediated cytostasis and cytotoxicity against a human histiocytic lymphoma cell line, Cancer Immunol. Immunother. 34(6), 393-398
  3. Fidler, I. J., W. E. Fogler, E. S. Kleinerman, and I. Saiki (1985), Abrogation of species specificity for activation of tumoricidal properties in macrophages by recombinant mouse or human interferon-$\gamma$ encapsulated in liposomes, J. Immunol. 135, 4289-4296
  4. Mehta, K., R. L. Juliano, and G. Lopez-Berestein (1984), Stimulation of macrophage protease secretion via liposomal delivery of muramyl dipeptide derivatives to intracellular sites, Immunology 51, 517-527
  5. Smith, M. R., K. Muegge, J. R. Keller, H.-F. Kung, H. A. Young, and S. K. Durum (1990), Direct evidence for an intracellular role for IFN-$\gamma$: microinjection of human IFN-$\gamma$ induces Ia expression on murine macrophages, J. Immunol. 144, 1777-1782
  6. Pfeffer, L. M., C. A. Dinarello, R. B. Herberman, B. R. Williams, E. C. Borden, R. Bordens, M. R. Walter, T. L. Nagabhushan, P. P. Trotta, and S. Pestka (1998), Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons, Cancer Res. 58(12), 2489-2499
  7. Pestka, S. (1997), The human interferon-alpha species and hybrid proteins, Semin. Oncol. 24(suppl. 9), S9-4-S9-17
  8. Sreevalsan, T. (1995), Biological therapy with Interferon-alfa and beta: preclinical studies. In: DeVita V. T. J., S. M. D. Hellman, S. A. Rosenberg, eds. Biologic Therapy of Cancer, 2nd ed., Philadelphia: J. B. Lippincott Company, 347-364
  9. Naylor, S. L., A. Y. Sakaguchi, T. B. Shows, M. L. Law, D. V. Goeddel, and P. W. Gray (1983), Human immune interferon gene is located on chromosome 12, J. Exp. Med. 57, 1020-1027
  10. Nagata, S., N. Mantei, and C. Weissmann (1980), The structure of one of the eight or more distinct chromosomal genes for human interferon-alpha, Nature 287, 401-408
  11. Nagata, S., H. Taira, A. Hall, L. Johnstrud, M. Streuli, J. Escodi, W. Boll, K. Cantell, and C. Weissmann (1980), Synthesis in E. coli of a polypeptide with human leukocyte interferon activity, Nature 284, 316-320
  12. Goldberg, M. M., L. S. Belkowski, and B. R. Bloom (1989), Regulation of macrophage growth and antiviral activity by interferon-gamma, J. Cell Biol. 109, 1331-1340
  13. Gattacceca, F., Y. Pilatte, C. Billard, I. Monnet, S. Moritz, J. Le Carrou, M. Eloit, and M.-C. Jaurand (2002), Ad-IFN-$\gamma$ induces antiproliferative and antitumoral responses in malignant mesothelioma, Clin. Cancer Res. 8(10), 3298-3304
  14. Shuai, K., J. Liao, and M. M. Song (1996), Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1, Mol. Cell Biol. 16(9), 4932–4941
  15. Dalton, D. K., S. Pitts-Meek, S. Keshav, I. S. Figari, A. Bradley, T. A. Stewart (1993), Multiple defects of immune cell function in mice with disrupted interferon-gamma genes, Science 259(5102), 1739-1742
  16. Billiau, A. A., H. Heremans, K. Vermeire, and P. Matthys (1998), Immunomodulatory Properties of Interferon-$\gamma$: An Update, Ann. N.Y. Acad. Sci., 856(1), 22-32
  17. Shin, C. S., M. S. Hong, C. S. Bae, D. Y. Kim, H. C. Shin, and J. Lee (1988), Growth-associated synthesis of recombinant human glucagon and human growth hormone in high-cell-density cultures of Escherichia coli, Appl. Microbiol. Biotechnol. 49, 364-370
  18. Sasaki, K., S. Dockerill, D. A. Adamiak, I. J. Tickle, and T. Blundell (1975), X-ray analysis of glucagon and its relationship to receptor binding, Nature 257, 751-757
  19. Saraswat, V., J. Lee, D. Y. Kim, and Y. H. Park (2000), Synthesis of recombinant human interleukin-2 via controlled feed of lactose - complex media in fed-batch cultures of Escherichia coli BL21(DE3) [pT7G3-IL2] Biotechnol. Letters 22, 261-265
  20. Lee, J., S. W. Kim, Y. H. Kim, and J. Y. Ahn (2002), Active human ferritin H/L-hybrid and sequence effect on folding efficiency in Escherichia coli, Biochem. Biophys. Res. Commun. 298, 225-229
  21. Sambrook, J. and D. W. Russell (2001), Molecular Cloning - a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press
  22. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (2002), Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 5th ed. John Wiley & Sons, Inc
  23. Bradford, M. M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248-254
  24. Alonso, A., G. Morales, R. Escalante, E, Campanario, L, Sastre, and J. L. Martinez (2004), Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology, J. Antimicrob. Chemother. 53, 432-434
  25. Buchel, D. E., B. Gronenborn, and B. Muller-Hill (1980), Sequence of the lactose permease gene, Nature 283, 541-545
  26. Kaback, H. R., S. Frillingos, H. Jung, K. Jung, G. G. Prive, M. L. Ujwal, C. Weitzman, J. Wu, and K. Zen (1994), The lactose permease meets Frankenstein, J. Exp. Biol. 196, 183-195