Quantitative Analysis of Isoflavones and Lignans in Sea Vegetables Consumed in Korea Using Isotope Dilution Gas Chromatography-Mass Spectrometry

  • Lee, Young-Joo (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Adlercreutz, Herman (Folkhalsan Research Center, Division of Clinical Chemistry, Institute for Preventive Medicine, Nutrition and Cancer, University of Helsinki) ;
  • Kwon, Hoon-Jeong (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University)
  • Published : 2006.02.28


The phytoestrogens including isoflavones (genistein, daidzein, biochanin A, formononetin, and glycitein), coumestrol, and lignans (secoisolariciresinol, matairesinol, and anhydrosecoisolariciresinol) were quantified in edible sea vegetables from Korea. Sea vegetable samples were collected based on domestic consumption data. After hydrolysis of phytoestrogen glycosides in prepared samples, aglycones of phytoestrogens were extracted with diethyl ether and analyzed with isotope dilution gas chromatography-mass spectrometry in selected ion monitoring mode (ID-GC-MS-SIM). Total samples included 19 samples representing eight species. Most of the samples showed rather low concentrations, ranging from not determinated to $79.2\;{\mu}g/kg$ for isoflavones and from 106.4 to $694.8\;{\mu}g/kg$ for lignans. The daily intake of phytoestrogen from sea vegetables, estimated from the present data and domestic consumption data, was about $0.13\;{\mu}g/day$ for isoflavones and $2.0\;{\mu}g/day$ for lignans. When we compared these results with those from legumes, sea vegetables would not be considered the major source of phytoestrogens in the Korean diet.


  1. Lee IK, Shim SC, Cho HO, Rhee CO. On the component of edible marine algae in Korea. J. Korean Agric. Chem. Soc. 14: 213-220 (1971)
  2. Wong KH, Cheung PCK. Nutritional evaluation of some subtropical red and green seaweeds. Part II. In vitro protein digestibility and amino acid profiles of protein concentrates. Food Chem. 72: 11-17 (2001) https://doi.org/10.1016/S0308-8146(00)00176-X
  3. Jimenez-Escrig A, Sanchez-Muniz FJ. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr. Res. 20: 585-598 (2000) https://doi.org/10.1016/S0271-5317(00)00149-4
  4. Do JR, Kim EM, Koo JG, Jo KS. Dietary fiber contents of marine algae and extraction condition of the fiber. J. Korean Fish. Soc. 30: 291-296 (1997)
  5. Sanchez-Machado DI, Lopez-Cervantes J, Lopez-Hernandez J, Paseiro-Losada P. Fatty acid, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 85: 439-444 (2004) https://doi.org/10.1016/j.foodchem.2003.08.001
  6. Ruperez P. Mineral content of edible marine seaweeds. Food Chem. 79: 23-26 (2002) https://doi.org/10.1016/S0308-8146(02)00171-1
  7. Kim SJ, Woo S, Yun H, Yum S, Choi E, Do J, Jo J, Kim D, Lee S, Lee TK. Total phenolic contents and biological activities of Korean seaweed extracts. Food Sci. Biotechnol. 14: 798-802 (2005)
  8. Hiroishi S, Sugie K, Yoshida T, Morimoto J, Taniguchi Y, Imai S, Kurebayashi J. Antitumor effects of Marginisporum crassissimum (Rhodophyceac), a marine red alga. Cancer Lett. 167: 145-150 (2001) https://doi.org/10.1016/S0304-3835(01)00460-8
  9. Castro R, Zarra I, Lamas J. Water-soluble seaweed extracts modulate the respiratory burst activity of turbot phagocytes. Aquaculture 229: 67-78 (2004) https://doi.org/10.1016/S0044-8486(03)00401-0
  10. Choi J, Ryu H, Chung J, Park J, Hwang J, Shin D, Lee S, Ryang R. Antioxidant property of genistein: inhibitory effect on HOCI induced protein degradation, DNA cleavage, and cell death. Food Sci. Biotechnol. 14: 399-404 (2005)
  11. Tham DM, Gardner CD, Haskell WL. Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J. Clin. Endocrinol. Metab. 83: 2223-2235 (1998) https://doi.org/10.1210/jc.83.7.2223
  12. Anderson Jill, Anthony M, Messina M, Gamer SC. Effects of phyto-oestrogens on tissues. Nutr. Res. Rev. 12: 75-116 (1999) https://doi.org/10.1079/095442299108728875
  13. Liggins J, Bluck LJC, Runswick S, Atkinson C, Coward WA, Bingham SA. Daidzein and genistein content of fruits and nuts. J. Nutr. Biochem. 11: 326-331 (2000) https://doi.org/10.1016/S0955-2863(00)00085-1
  14. Mazur W, Fotsis T, Wahala K, Ojala S, Salakka A, Adlercreutz H. Isotope dilution gas chromatographic-mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples. Anal. Biochem. 233: 169-180 (1996) https://doi.org/10.1006/abio.1996.0025
  15. Mazur WM, Duke JA, Wahala K, Rasku S, Adlercreutz H. Isoflavonoids and lignans in legumes: Nutritional and health aspects in humans. Nutr. Biochem. 9: 193-200 (1998) https://doi.org/10.1016/S0955-2863(97)00184-8
  16. Mazur WM, Wahala K, Rasku S, Salakka A, Hase T, Adlercreutz H. Lignan and isoflavonoid concentrations in tea and coffee. Br. J. Nutr. 79: 37-45 (1998) https://doi.org/10.1079/BJN19980007
  17. Meagher LP, Beecher GR. Assessment of data on the lignan content offoods. J. Food Comp. Anal. 13: 935-947 (2000) https://doi.org/10.1006/jfca.2000.0932
  18. Korean Ministry of Health and Welfare. 2001 National Health and Nutrition Survey. Korean Ministry of Health and Welfare, Seoul, Korea. pp. 284-286, 296 (2002)
  19. Ministry of Education and Human Resources Development. Illustrated encyclopedia of fauna and flora of Korea. Vol. 8. Marine Algae. Ministry of Education and Human Resources Development, Seoul, Korea. (1968)
  20. Kim JS, Kwon CS. Estimated dietary isoflavone intake of Korean population based on National Nutrition Survey. Nutr. Res. 21: 947-953 (2001) https://doi.org/10.1016/S0271-5317(01)00310-4
  21. The Korean Nutrition Society. Recommended Dietary Allowances for Koreans, Seventh reversion. The Korean Nutrition Society, Seoul, Korea. pp. 380-385 (2000)
  22. Thompson LU, Robb P, Serraino M, Cheung F. Mammalian lignan production from various foods. Nutr. Cancer 16: 43-52 (1991) https://doi.org/10.1080/01635589109514139
  23. Hernandez BY, McDuffie K, Franke AA, Killeen J, Goodman MT. Plasma and dietary phytoestrogens and risk of premalignant lesions of the cervix. Nutr. Cancer 49: 109-124 (2004) https://doi.org/10.1207/s15327914nc4902_1
  24. Bennette HW, Underwood EJ, Shier FL. A specific breeding problem of sheep on subterranean clover pastures in western Australia. Aust. J. Agric. Res. 22: 131-138 (1946) https://doi.org/10.1071/AR9710131
  25. Kanno J, Kato H, Iwata T, Inoue T. Phytoestrogen-Iow diet for endocrine disruptor studies. J. Agric. Food Chem. 50: 3883-3885 (2002) https://doi.org/10.1021/jf020235p
  26. Phipps WR, Martini MC, Lampe JW, Slavin JL, Kurzer MS. Effect of flax seed ingestion on the menstrual cycle. J. Clin. Endocrinol. Metab. 77: 1215-1219 (1993) https://doi.org/10.1210/jc.77.5.1215
  27. Thompson LV, Rickard SE, Cheung F, Kenaschuk EO, Obermeyer WR. Variability in anticancer lignan levels in flaxseed. Nutr. Cancer 27: 26-30 (1997) https://doi.org/10.1080/01635589709514497
  28. Liggins J, Grimwood R, Bingham SA. Extraction and quantification of lignan phytoestrogens in food and human samples. Anal. Biochem.287: 102-109 (2000) https://doi.org/10.1006/abio.2000.4811
  29. Wilkinson AP, W1ihalii K, Williamson G Identification and quantification of polyphenol phytoestrogens in foods and human biological fluids. J. Chromatogr. B 777: 93-109 (2002)
  30. Wu AH, Ziegler RG, Nomura AM, West DW, Kolonel LN, HomRoss PL, Hoover RN, Pike MC. Soy intake and risk of breast cancer in Asians and Asian Americans. Am. J. Clin. Nutr. 68: 1437S-1443S (1998) https://doi.org/10.1093/ajcn/68.6.1437S