DOI QR코드

DOI QR Code

Structural Conservation and Food Habit-related Liver Expression of Uncoupling Protein 2 Gene in Five Major Chinese Carps

  • Liao, Wan-Qin (College of Life Science and Technology, Jinan University) ;
  • Liang, Xu-Fang (College of Life Science and Technology, Jinan University) ;
  • Wang, Lin (College of Life Science and Technology, Jinan University) ;
  • Fang, Ling (College of Life Science and Technology, Jinan University) ;
  • Lin, Xiaotao (College of Life Science and Technology, Jinan University) ;
  • Bai, Junjie (Pearl River Fisheries Research Institute, Ministry of Agriculture) ;
  • Jian, Qing (Pearl River Fisheries Research Institute, Ministry of Agriculture)
  • Received : 2005.10.30
  • Accepted : 2005.12.20
  • Published : 2006.07.31

Abstract

The full-length cDNA of grass carp (Ctenopharyngodon idellus) and silver carp (Hypophthalmichthys molitrix) uncoupling protein 2 (UCP2) was obtained from liver. The grass carp UCP2 cDNA was determined to be 1152 bp in length with an open reading frame that encodes 310 amino acids. Five introns (Intron 3, 4, 5, 6 and 7) in the translated region, and partial sequence of Intron 2 in the untranslated region of grass carp UCP2 gene were also obtained. Gene structure comparison between grass carp and mammalian (human and mouse) UCP2 gene shows that, the UCP2 gene structure of grass carp is much similar to that of human and mouse. Partial UCP2 cDNA sequences of bighead carp (Aristichthys nobilis) and mud carp (Cirrhinus molitorella), were further determined. Together with the common carp (Cyprinus carpio) UCP2 sequence from GenBank (AJ243486), multiple alignment result shows that the nucleotide and amino acid sequences of the UCP2 gene, were highly conserved among the five major Chinese carps that belong to four subfamilies. Using beta-actin as control, the ratio UCP2/beta-actin mRNA (%) was determined to be $149.4{\pm}15.6$ (common carp), $127.4{\pm}22.1$ (mud carp), $96.7{\pm}12.7$ (silver carp), $94.1{\pm}26.8$ (bighead carp) and $63.7{\pm}16.2$ (grass carp). The relative liver UCP2 expression of the five major Chinese carps, shows a close relationship with their food habit: benthos and detrituseating fish (common carp and mud carp) > planktivorious fish (silver carp and bighead carp) > herbivorious fish (grass carp). We suggest that liver UCP2 might be important for Chinese carps to detoxify cyanotoxins and bacteria in debris and plankton food.

References

  1. Argyropoulos, G., Brown, A. M., Peterson, R., Likes, C. E., Watson, D. K. and Garvey, W. T. (1998) Structure and organization of the human uncoupling protein 2 gene and identification of a common biallelic variant in Caucasian and African-American subjects. Diabetes 47, 685-687 https://doi.org/10.2337/diabetes.47.4.685
  2. Carmichael, W. W. (2001) Health effects of toxin-producing cyanobacteria: 'the CyanoHABs'. Hum. Ecol. Risk. Assess. 7, 1393-1407 https://doi.org/10.1080/20018091095087
  3. Chen, J. C., Hu, Y. D. and Zhang, R. T. (1995) Studies on the toxic effects of Microcystis on fishes. Fishery Science Information 22, 169-171
  4. Chen, J. W., Zhang, L. P., Liang, X. F. and Hwang, F. (1992) Effect of hydroxyl radical on Na-K-ATPase activity of the brain microsomal membranes. Cell Biol. Int. Rep. 16, 927-936 https://doi.org/10.1016/S0309-1651(06)80172-4
  5. Codd, G. A. (1995) Cynobacterial toxins: occurrence, properties and biological significance. Wat. Sci. Technol. 32, 149-156
  6. Dawson, R. M. (1998) The toxicology of microcystins. Toxicon 36, 953-962 https://doi.org/10.1016/S0041-0101(97)00102-5
  7. De Sanctis, J. B., Blanca, I., Radzioch, D. and Bianco, N. E. (1994) Lipoprotein lipase expression in natural killer cells and its role in their cytotoxic activity. Immunology 83, 232-239
  8. Ding, W. X., Shen, H. M., Zhu, H. G. and Ong, C. N. (1998) Studies on oxidative damage induced by cyanobacterial extract in primary cultured rat hepatocytes. Environ. Res. 78, 12-18 https://doi.org/10.1006/enrs.1998.3843
  9. Echtay, K. S., Roussel, D., St-Pierre, J., Jekabsons, M. B., Cadenas, S., Stuart, J. A., Harper, J. A., Roebuck, S. J., Morrison, A., Pickering, S., Clapham, J. C. and Brand, M. D. (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415, 96-99 https://doi.org/10.1038/415096a
  10. Fischer, W. J. and Dietrich, D. R. (2000) Pathological and biochemical characterization of Microcystin-induced hepatopancreas and kidney damage in Carp (Cyprinus carpio). Toxicol. Appl. Pharmacol. 164, 73-81 https://doi.org/10.1006/taap.1999.8861
  11. Fleury, C., Neverova, M., Collins, S., Raimbault, S., Champigny, O., Levi-Meyrueis, C., Bouillaud, F., Seldin, M. F., Surwit, R. S., Ricquier, D. and Warden, C. H. (1997) Uncoupling protein 2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15, 269-272 https://doi.org/10.1038/ng0397-269
  12. Gehringer, M. M., Downs, K. S., Downing, T. G., Naudé, R. J. and Shephard, E. G. (2003) An investigation into the effect of selenium supplementation on microcystin hepatotoxicity. Toxicon 41, 451-458 https://doi.org/10.1016/S0041-0101(02)00362-8
  13. Hanák, P. and Ježek, P. (2001) Mitochondrial uncoupling protein and phylogenesis-UCP4 as the ancestral uncoupling protein. FEBS Lett. 495, 137-141 https://doi.org/10.1016/S0014-5793(01)02338-9
  14. Hermansky, S. J., Stohs, S. J., Eldeen, Z. M., Roche, V. F. and Mereish, K. A. (1991) Evaluation of potential chemoprotectants against microcystin-LR hepatotoxicity in mice. J. Appl. Toxicol. 11, 65-74 https://doi.org/10.1002/jat.2550110112
  15. Hwang, F. and Liang, X. F. (1989) Spin-trapping studies of free radicals in human erythrocytes. Stud. Biophys. 134, 105-110
  16. Hwang, F. and Liang, X. F. (1991) Damage to membrane lipids and proteins of brain microsomes by hydroxyl radicals. Acta Biophys. Sinica 7, 223-226
  17. Ishioka, K., Kanehira, K., Sasaki, N., Kitamura, H., Kimura, K. and Saito, M. (2002) Canine mitochondrial uncoupling proteins: structure and mRNA expression of three isoforms in adult beagles. Comp. Biochem. Physiol. B 131, 483-489
  18. Ježek, P. and Urbánková, E. (2000) Specific sequence motifs of mitochondrial uncoupling proteins. IUBMB Life 49, 63-70 https://doi.org/10.1080/713803586
  19. Larrouy, D., Laharrague, P., Carrera, G., Viguerie-Bascands, N., Levi-Meyrueis, C., Fleury, C., Pecqueur, C., Nibbelink, M., Andre, M., Casteilla, L. and Ricquier, D. (1997) Kupffer cells are a dominant site of uncoupling protein 2 expression in rat liver. Biochem. Biophys. Res. Commun. 235, 760-764 https://doi.org/10.1006/bbrc.1997.6852
  20. Li, X. Y., Liu, Y. D. and Song, L. R. (2001) Cytological alterations in isolated hepatocytes from common carp (Cyprinus carpio L.) exposed to microcystin-LR. Environ. Toxicol. 16, 517-522 https://doi.org/10.1002/tox.10012
  21. Liang, X. F., Ogata, H. Y., Oku, H., Chen, J. and Hwang, F. (2003) Abundant and constant expression of uncoupling protein 2 in the liver of red sea bream Pagru major. Comp. Biochem. Physiol. A 136, 655-661
  22. Liu, J. (1990) Lake Donghu Ecological Research. Beijing: Science Press 1-407
  23. Liu, J. K. and Xie, P. (2003) Direct control of microcysis bloom through the use of planktivorous carp-closure experiments and lake fishery practice. Ecoligic Sicence 22, 193-196
  24. Negre-Salvayre, A., Hirtz, C., Carrera G, Cazenave, R., Troly, M., Salvayre, R., Penicaud, L. and Casteilla, L. (1997) A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 11, 809-815 https://doi.org/10.1096/fasebj.11.10.9271366
  25. Nicholls, D. G. and Locke, R. M. (1984) Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1-64 https://doi.org/10.1152/physrev.1984.64.1.1
  26. Pecqueur C., Alves-Guerra M. C., Gelly C, Levi-Meyrueis C., Couplan E., Collins S., Ricquier D., Bouillaud F., and Miroux B. (2001) Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J. Biol. Chem. 276, 8705-8712 https://doi.org/10.1074/jbc.M006938200
  27. Pouria, S., Andrade, A. D., Barbosa, J., Cavalcanti, R. L., Barreto, V. T. S., Ward, C. J., Preiser, W., Poon, G. K., Neild, G. H. and Codd, G. A. (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352, 21-26 https://doi.org/10.1016/S0140-6736(97)12285-1
  28. Rabergh, C. M. I., Bylund, G. and Eriksson, J. E. (1991) Histopathological effects of microcystin-LR, a cyclic peptide toxin from the cyanobacterum (blue-green alga). Aquat. Toxicol. 20, 131-146 https://doi.org/10.1016/0166-445X(91)90012-X
  29. Ricquier, D. and Bouillaud, F. (2000) The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J. 345, 161-179 https://doi.org/10.1042/0264-6021:3450161
  30. Samec, S., Seydoux, J. and Dulloo, A. G. (1998) Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J. 12, 715-724 https://doi.org/10.1096/fasebj.12.9.715
  31. Skulachev, V. P. (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS. Lett. 397, 7-10 https://doi.org/10.1016/0014-5793(96)00989-1
  32. Stuart, J. A., Happer, J. A., Brindle, K. M. and Brand, M. D. (1999) Uncoupling protein 2 from carp and zebrafish, ectothermic vertebrates. Biochem. Biophys. Acta 1413, 50-54 https://doi.org/10.1016/S0005-2728(99)00081-X
  33. Trinchieri, G. (1989) Biology of natural killer cells. Adv. Immunol. 47, 187-376 https://doi.org/10.1016/S0065-2776(08)60664-1
  34. Wu, W., Qu, J. H., Chen, J. Z., Hu, G. D. and Liu, H. (2002) Toxicological effects on the fish liver by microcystins. China Environ. Sci. 22, 67-70
  35. Xie, L. Q., Xie, P., Ozawa, K., Honma, T., Yokoyama, A. and Park, H. (2004) Dynamics of microcystins-LR and -RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment. Environ. Pollut. 127, 431-439 https://doi.org/10.1016/j.envpol.2003.08.011
  36. Yamada, M., Hashida, T., Shibusawa, N., Iwasaki, T., Murakami, M., Monden, T., Satoh, T. and Mori, M. (1998) Genomic organization and promoter function of the mouse uncoupling protein 2 (UCP2) gene. FEBS Lett. 432, 65-69 https://doi.org/10.1016/S0014-5793(98)00835-7
  37. Yu, S. J. (1995) Primary prevention of hepatocelluar carcinoma. J. Gastroenterol. Hepatol 10, 674-682 https://doi.org/10.1111/j.1440-1746.1995.tb01370.x
  38. Zhang, Y. Y., Xu, L. H., Zhou, B. S. and Xu, Y. (1996) Preliminary studies on the role of GSH in detoxification of microcystin-LR in fish. Acta Hydrobiologica Sinica 20, 284-286

Cited by

  1. Molecular cloning and tissue expression of uncoupling protein 1, 2 and 3 genes in Chinese perch (Siniperca chuatsi) vol.185, 2015, https://doi.org/10.1016/j.cbpb.2015.03.005
  2. Relationship between expression of muscle-specific uncoupling protein 2 messenger RNA and genetic selection toward growth in channel catfish vol.51, 2015, https://doi.org/10.1016/j.domaniend.2014.11.003
  3. Molecular cloning and sequence analysis of heat shock proteins 70 (HSP70) and 90 (HSP90) and their expression analysis when exposed to benzo(a)pyrene in the clam Ruditapes philippinarum vol.555, pp.2, 2015, https://doi.org/10.1016/j.gene.2014.10.051
  4. Effects of malachite green on the mRNA expression of detoxification-related genes in Nile tilapia (Oreochromis niloticus) and other major Chinese freshwater fishes vol.28, pp.3, 2013, https://doi.org/10.1002/tox.20706
  5. Induction of Oxidative Stress and Related Transcriptional Effects of Sodium Fluoride in Female Zebrafish Liver vol.93, pp.1, 2014, https://doi.org/10.1007/s00128-014-1271-0
  6. Functional characterization of an uncoupling protein in goldfish white skeletal muscle vol.45, pp.3, 2013, https://doi.org/10.1007/s10863-013-9512-1
  7. Structural and functional characterization of microcystin detoxification-related liver genes in a phytoplanktivorous fish, Nile tilapia (Oreochromis niloticus) vol.144, pp.3, 2006, https://doi.org/10.1016/j.cbpc.2006.08.009
  8. Tissue-specific gene expression and functional regulation of uncoupling protein 2 (UCP2) by hypoxia and nutrient availability in gilthead sea bream (Sparus aurata): implications on the physiological significance of UCP1–3 variants vol.40, pp.3, 2014, https://doi.org/10.1007/s10695-013-9882-7