한국 EFL 학생들의 영어 손자음 인지
Identification of English Labial Consonants by Korean EFL Learners

CM Choi (choe@kyonggi.ac.kr)

요약

기존의 유의성 이론에 따르면, 마찰음이 파열음보다 유의자가으로 발음하기 어렵다는 것은 잘 알려진 사실이다. 따라서 본 연구에서는 한국 EFL 학습자들이 발음하기 어려운 마찰음 [t, v]를 어떻게 인지하는지 실험으로 하는 방법을 가해하였다. 15명의 한국 학생들이 영어 손자음이 들어간 음절을 인지하는 테스트를 실행한 결과, 손자음의 음절적 위치가 인지 정확도를 결정하는데 영향을 미친 결과였다. 특히 유의성 이론의 예상과 달리, 무성 마찰음 [t]의 정확도가 강하게 뒤이어짐의 위치가 적용한 모든 음절에 높게 나타났다. 영어 손자음의 영어 모음 인지 정확도가 강하게 영어 모음인 위치와 여러 요소에서 높은 반응에 일치함이 강하게 나타났다. 한국 학생들의 영어 손자음 인지에서는 유의성이 없다. 영어 학습자들은 유의성을 인지하지 못한다. 영어 학습자들은 유의성 이론을 무시하고 발음적 특징을 강조하는 장기적인 요소로 적응함을 보여주고 있다.

Abstract

The perception of English labial consonants was investigated via experiment where 15 Korean EFL learners identified monosyllables with the target labial consonants [p, b, t, v] in 4 different prosodic locations: initial onset position, intervocalic position before stress, intervocalic position after stress, and final code position. The overall result showed that the proportion of perception accuracy of the target consonants was rather low, amounting to only 55%. There was also a substantial effect since the accuracy rates for perceiving the four target consonants differed by position. Specifically, the average accuracy rate of the target consonant identification was higher in intervocalic position before stress (70%) and initial onset position (67%) than in intervocalic position after stress (45%) and final code position (35%). Further, the accuracy rate for [t] is high in all prosodic locations except intervocalic position after stress. The perception patterns were accounted for by the markerness and perceptual factors in conjunction with stress location.

I. Introduction

The initial place of English contains bilabial and labiodental places of articulation, English [p] and [b] are bilabial stops whereas English [f] and [v] are labiodental fricatives. It is commonly observed that English stops [p] and [b] are easier to pronounce than English fricative [f] and [v]. Thus, Korean EFL (English as a Foreign Language) learners frequently experience difficulty in producing the English labiodental fricatives. The difficulty posed to Korean learners seems to be due to the following two factors: inventory difference between Korean and English and markedness hierarchy among sounds.

As for the inventory difference between Korean and English, Korean does not have labiodental fricatives while English does. Thus, Korean learners would have more difficulties in acquiring the English labiodental fricatives than the English labial stops. This is also predicted by the contrastive analysis hypothesis proposed by Lado (1957) [9].

Markedness hierarchy also predicts the degree of difficulty that language learners have with L2 sounds. Markedness theory originates from Trubetzkoy (1939/1969) and Jakobson (1941/1968) and has been further developed by many scholars such as Greenberg (1966), Chomsky & Halle (1968), and Beckman (1977) [3][5][7][9]. According to markedness theory, fricatives are assumed to be more marked than stops. Likewise, voiced sounds are assumed to be more marked than voiceless sounds. Further, positional markedness is also found by many scholars [1][4][6]. That is, final position (i.e., codas) are more marked than initial position (i.e., stems). Then, more marked sounds are expected to pose more difficulty in acquisition than less marked ones because markedness implies being more specific, less frequent, more limited, more complex, later acquired, and difficult to produce.

II. Research Question

The research question in this study was to examine whether more marked sounds like English [f] and [v] were also more difficult for Korean EFL learners to perceive than less marked sounds like English [p] and [b]. English [f] and [v] are notorious for being hard to produce, so it is frequently mispronounced as Korean aspirated bilabial stop [pʰ] and Korean unaspirated stop [p], respectively. Thus, an experiment was designed to investigate the perception of English labial consonants [p, b, f, v] by Korean learners in detail. Specifically, the following questions were raised in this study:

1. Can markedness theory predict the degree of difficulty in perceiving English labial consonants?
2. Can prosodic position affect the degree of perceptual difficulty for the English labial consonants?

III. Research Design

1. Stimuli

In order to investigate how Korean learners of English perceive English labial obstruents, 4 obstruents [p, b, f, v] were combined with the low vowel /u/. The target English obstruents and the low vowel sequences were located in 4 different prosodic contexts. The 4 different prosodic contexts were composed of initial onset position, final coda position, intervocalic position before stress and intervocalic position after stress. Thus, a total of 16 types were
made as non-words.

(1) Stimulus classification by prosodic position
(When there are more than one syllables, double vowels indicate a stressed syllable.

<table>
<thead>
<tr>
<th>Place</th>
<th>Manner</th>
<th>CV</th>
<th>VCW</th>
<th>WCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>bilabial</td>
<td>voiceless dental</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>voiceless labial</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>labial</td>
<td>voiceless dental</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>voiceless labial</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The 16 types of stimuli were spoken by 4 native speakers of American English. Two of them were male and the other two were female. The native speakers were asked to read the stimulus list. Thus, the 16 types of stimuli uttered by the 4 speakers amounted to a total of 64 tokens. The production of the 64 tokens by the native speakers were recorded in order to present the stimuli to Korean learners of English. The created stimuli were randomized so that the same type of a stimulus produced by the 4 different native speakers does not occur in a row.

2. Participants

Forty college student in a university in the metropolitan area of Seoul participated in this study. The participants are characterized as female predominant, consisting of 12 male students and 28 female students, with the mean age of 21.97 at the time of the experiment. The participants were drawn from the same division majoring in English language and literature. None of them was found to have spent time in English speaking countries previously. The participants had learned English for more than 10 years in Korea, beginning to receive English education around the age of 15. The proficiency level of the participants would be evaluated as upper-intermediate because their major was English with more than 10 years of English education.

3. Procedures

The participants were asked to listen to a CD containing the randomized 160 non-word stimuli and to identify each stimulus. The identification test was a paper-and-pencil type. The participants were asked to choose the consonant of each stimulus they heard from a list of 15 alternatives on the answer sheet. The 15 alternatives were presented in IPA (International Phonetic Alphabet) symbols. The answer sheet also has the option of writing-in response (Other: _) so that the listeners may write down what they heard when there was no correspondence between a stimulus and the choices. The 15 alternatives are given in the following table.

(2) Sample item

Keyword tell ask thin that tall year at zip pin
b l s f d t

Each alternative was presented with a key word on the top of the answer sheet in order to exemplify the IPA symbol. Before beginning the perception test, several examples in different prosodic locations indicating which sound each IPA symbol corresponds to were introduced to the listeners. Also, the listeners were provided a familiarization session where 5 sample questions were played for practice to clarify the experimental procedure. All of the participants' answer sheets were collected and scored.
IV. Results and Discussions

In the analysis of the perception test, the proportion of accuracy of the stimuli was counted. The analysis of 2560 tokens (4 components * 4 prosodic locations * 4 talkers * 40 listeners) showed that the number of correctly perceived tokens was 1991. Thus, the average accuracy rate amounted to only 78%. However, this average accuracy rate varied by consonant. Therefore, the correct percentage of each consonant were calculated as follows:

3. Overall correct perception rate

![Overall correct perception rate graph]

This result was surprising given the fact that the accuracy rate of the voiceless labiodental fricative [f] was higher than the bilabial stops [p] and [b]. In markedness theory fricatives are more difficult to learn than stops. Nonetheless, 88% of accuracy was obtained in perceiving [f], compared with 55% and 58% of accuracy in perceiving [p] and [b], respectively. However, the voiced labiodental fricative [v] showed the lowest accuracy rate of 58%, as expected. Thus, the accuracy rate for each consonant was examined again by position. The accuracy for each consonant along with the positional average rate is reported below.

When the proportion of correct identification of the stimuli was compared depending on prosodic locations, a positional effect was found since the accuracy rates of the four target consonants differed by position. Specifically, the participants showed an average accuracy rate of 77% in initial onset position. However, 88% of the participants correctly perceived [p] in initial onset position, which is far higher than the average accuracy rate. Likewise, 76% of the participants correctly identified [b]. By contrast, only 52% of the participants correctly perceived the voiced [d] and [k].

4. Accuracy rate in initial onset position CV

![Accuracy rate in initial onset position CV graph]

In general, the listeners were more accurate in identifying the voiceless stimuli [p] and [b] than the voiced stimuli [d] and [k] in the initial onset position. Although the high accuracy rate for the voiceless fricative [f] was unexpected, the results still seemed to support universal tendencies in that voiceless consonants were better perceived than their voiced counterparts.

In the final code position the average accuracy rate was only 38%, which is quite low compared to 77% of the initial onset position. Accordingly, there was a positional effect between initial onset position and final code position in identifying the target labial consonants.

5. Accuracy rate in final code position VC

![Accuracy rate in final code position VC graph]
Regarding individual accuracy rates in the final coda position, the accuracy rate of [l] was far above the average rate, taking up 66%. By contrast, accuracy rates for the remaining stimuli [p], [b], and [v] took up 22%, 28%, and 23%, respectively. The identification of [p] (22%) was conspicuously low in the final coda position compared to the highest accuracy rate (86%) in the initial onset position. On the whole, the overall accuracy for each stimulus was significantly worse in the more marked final coda position than in the less marked initial onset position. This supported the positional markedness hypothesis because the targets in initial onset position were more correctly perceived than those in final coda position.

In intervocalic position before stress the listeners were good at identifying the stimulus. Thus, the average accuracy rate amounted to 70%.

The accuracy rates were 35% for [p] and [v]. The accuracy rate for [l] was also low, taking up 42%. However, the accuracy for the stimulus [b] was evidently high since 71% of the listeners perceived it correctly. The lower accuracy rate in intervocalic position after stress than that in intervocalic position before stress conformed to the fact that unstressed position is less prominent than stressed position. Consequently, segments in unstressed position are predicted to be difficult to perceive.

V. Discussion and Conclusion

The overall result showed that the proportion of perception accuracy of the target consonants was rather low, amounting to only 55%. In addition, the overall result seemed not to follow the markedness hierarchy because the perception rate for the marked fricative [l] was the highest (65%).

There was a positional effect because the listeners were better at identifying English initial consonants in intervocalic position before stress (71%) and initial onset position (67%) than in intervocalic position after stress (45%) and final coda position (36%). In the initial onset position the voiceless stimulus were better identified than the voiced counterparts. In the final coda position the listeners had a great difficulty in identifying the stimuli except [l] in the intervocalic
position before stress the listeners showed high accuracy rates for all stimuli except the stimulus [a]. In the intervocalic position after stress, the accuracy rates of the stimuli were relatively low compared to those in the intervocalic position before stress. However, the stimulus [b] showed the highest accuracy in this position.

The high accuracy rate for [f] seemed to be attributable to the prominent nature of the inherent loudness of fricatives. Since fricative noise carries more auditory cues, they might be easy to perceive than stops in some cases. In sum, the perception pattern of English labial consonants cannot be determined by either loudness conditions alone or acoustic similarity alone. Instead, conventional loudness and perceptual factors in conjunction with stress location can account for the perception patterns.

References


지자 소개

호 미희 (Wi-Hui Cho) 정희은

- 1996년 2월 : 성균관대학교 영어영문학부 교수
- 2001년 6월 : 인더니수학대학교 연어학과 연어학과 교수
- 2004년 11월 : 인더니수학대학교 연어학과 연어학과 교수

- 1996년 3월 ~ 2001년 2월 : 부정부합학교 영어영문학부 교수
- 2001년 3월 ~ 현재 : 경기대학교 영어영문학부 교수
- "관심분야" : 교육, 응용언어학, 교육 과정학