DOI QR코드

DOI QR Code

AN EQUALITY CONSTRAINED LEAST SQUARES APPROACH TO THE STRUCTURAL REANALYSIS

  • Jang, Ho-Jong
  • Published : 2006.11.01

Abstract

An efficient method for reanalysis of a damaged structures is presented. Perturbation analysis for the equality constrained least squares problem is adapted to handle structural reanalysis, and related theoretical and numerical results are presented.

Keywords

structural reanalysis;least squares problem;GQR factorization;perturbation analysis

References

  1. E. Anderson, Z. Bai, and J. Dongarra. Generalized QR factorization and its applications, Linear Algebra and Appl. 162 (1992), 243-271 https://doi.org/10.1016/0024-3795(92)90379-O
  2. J. S. Arora, D. F. Haskell, and A. K. Gavil, Optimal design of large structures for damage tolerances, AIAA J. 18 (1980)
  3. J. Barlow, Error analysis and implementation aspects of deferred correction for equality constrained least squares problems, SIAM J. Numer. Anal. 25 (1988), no. 6, 1340-1358 https://doi.org/10.1137/0725076
  4. A. J. Cox and N. J. Higham, Accuracy and stability of the null space method for solving the equality constrained least squares problem, BIT 39 (1999), no. 1, 34-50 https://doi.org/10.1023/A:1022365107361
  5. L. Elden, Perturbation theory for the least squares problem with linear equality constraints, SIAM J. Numer. Anal. 17 (1980), no. 3, 338-350 https://doi.org/10.1137/0717028
  6. M. Heath, R. Plemmons and R. Ward, Sparse orthogonal schemes for structural optimization using the force method, SIAM J. Sci. Statist. Comp. 5 (1984), no. 3, 514-532 https://doi.org/10.1137/0905038
  7. H. Jang, A constrained least squares approach to the rapid reanalysis of struc- tures, Linear Algebra Appl. 265 (1997), 185-202 https://doi.org/10.1016/S0024-3795(97)80079-1
  8. C. C. Paige, Some aspect of generalized QR factorizations, In Reliable Numerical Computation, M. G. Cox and S. J. Hammarling, editors, Ocford University Press (1990), 73-91
  9. C. C. Paige, Computer solution and perturbation analysis of generalized linear least squares problems, Math. Comput. 33 (1979), no. 145, 171-183 https://doi.org/10.2307/2006034
  10. R. Plemmons and R. White, Substructuring methods for computing the nullspace of equilibrium matrices, SIAM J. Matrix Anal. Appl. 11 (1990), no. 1, 1-22 https://doi.org/10.1137/0611001
  11. U. Kirsch and P. Y. Papalambros, Structural Reanalysis for Topological Modificatioin-a Unified Approach, Struct. Multidisc. Optim. 21 (2001), 333-344 https://doi.org/10.1007/s001580100112
  12. D. S. Scott, J. C. Westkaemper, A. Sejal, and R. O. Stearman, The influence of ballistic damage on the aeroelastic characteristics of lifting surfaces, AFOSR TR-80-0220, (1979)
  13. J. R. Batt and S. Gellin, Rapid reanalysis by the force method, Comput. Appl. Mech. and Eng. 53 (1985), 105-117 https://doi.org/10.1016/0045-7825(85)90001-5