DOI QR코드

DOI QR Code

Nanocrystals and Their Biomedical Applications

  • Jun, Young-wook ;
  • Jang, Jung-tak ;
  • Cheon, Jin-woo
  • Published : 2006.01.20

Abstract

Shape controlled synthesis of inorganic nanocrystals is one of the important issues in materials chemistry due to their novel shape dependent properties. Although various shapes of nanocrystals have been developed, a systematic account on the shape control of these nanocrystals still remains an important subject in materials chemistry. In this article, we will overview the recent developments in the geometrical shape evolution of semiconductor and metal oxide nanocrystals obtained by nonhydrolytic synthetic methods. Many structurally unprecedented motifs have appeared as zero-dimesional (D) polyhedrons, one-D rods and wires, two-D plates and prisms, and other advanced shapes such as branched rods, stars, and inorganic dendrites. Important parameters which determine the geometrical shapes of nanocrystals are also illustrated. In addition, as a possible application of such nanocrystals for biomedical sciences, we further describe their utilizations for cancer diagnosis through nanocrystal-assisted magnetic resonance imaging (MRI).

Keywords

Nanocrystals;Shape control;Anisotropic nanostructures;Nano-MRI

References

  1. Alivisatos, A. P. Science 1996, 271, 933 https://doi.org/10.1126/science.271.5251.933
  2. Markovich, G. C.; Collier, P.; Henrichs, S. E.; Remacle, F.; Levine, R. D.; Heath, J. R. Acc. Chem. Res. 1999, 32, 415 https://doi.org/10.1021/ar980039x
  3. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, 1901 https://doi.org/10.1126/science.1066541
  4. Steigerwald, M.; Brus, L. E. Acc. Chem. Res. 1990, 23, 183 https://doi.org/10.1021/ar00174a003
  5. Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435 https://doi.org/10.1021/ar9700365
  6. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 https://doi.org/10.1021/ja00072a025
  7. Yang, P. MRS Bull. 2005, 30, 85 https://doi.org/10.1016/0025-5408(94)00098-0
  8. Law, M.; Goldberger, J.; Yang, P. Annu. Rev. Mater. Res. 2004, 34, 83 https://doi.org/10.1146/annurev.matsci.34.040203.112300
  9. Bakkers, E. P. A. M.; Verheijen, M. A. J. Am. Chem. Soc. 2003, 125, 3440 https://doi.org/10.1021/ja0299102
  10. Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Science 2004, 303, 1348 https://doi.org/10.1126/science.1092356
  11. Saito, Y.; Matsumoto, T. Nature 1998, 392, 237
  12. Gao, P. X.; Wang, Z. L. J. Phys. Chem. B 2004, 108, 7534 https://doi.org/10.1021/jp049657n
  13. Pileni, M. P. Langmuir 1997, 13, 3266 https://doi.org/10.1021/la960319q
  14. Chestnoy, N.; Hull, R.; Brus, L. E. J. Chem. Phys. 1986, 85, 2237 https://doi.org/10.1063/1.451119
  15. Song, Q.; Zhang, Z. J. J. Am. Chem. Soc. 2004, 126, 6164 https://doi.org/10.1021/ja049931r
  16. Jana, N. R.; Chen, Y.; Peng, X. Chem. Mater. 2004, 16, 3931 https://doi.org/10.1021/cm049221k
  17. Murray, C. B.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. IBM J. Res. Dev. 2001, 45, 47 https://doi.org/10.1147/rd.451.0047
  18. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2002, 124, 3343 https://doi.org/10.1021/ja0173167
  19. Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F.; Zhang, J. Z.; Hyeon, T. J. Am. Chem. Soc. 2003, 125, 11100 https://doi.org/10.1021/ja0357902
  20. Jun, Y.; Lee, S.-M.; Kang, N.-J.; Cheon, J. J. Am. Chem. Soc. 2001, 123, 615
  21. Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E. C.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59 https://doi.org/10.1038/35003535
  22. Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700 https://doi.org/10.1021/ja003055+
  23. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 1389 https://doi.org/10.1021/ja0027766
  24. Manna, L.; Million, D. J.; Miesel, A.; Scher, E. C.; Alivisatos, A. P. Nature Mater. 2003, 2, 382 https://doi.org/10.1038/nmat902
  25. Tang, Z.; Kotov, N. A.; Giersig, M. Science 2002, 297, 237 https://doi.org/10.1126/science.1072086
  26. Cozzoli, P. D.; Manna, L.; Curri, M. L.; Kudera, S.; Giannini, C.; Striccoli, M.; Agostiano, A. Chem. Mater. 2005, 17, 1296 https://doi.org/10.1021/cm047874v
  27. Ahrenkiel, S. P.; Micic, O. I.; Miedaner, A.; Curtis, C. J.; Nedeljkoic, J. M.; Nozik, A. J. Nano Lett. 2003, 3, 833 https://doi.org/10.1021/nl034152e
  28. Lee, S.-M.; Jun, Y.; Cho, S.-N.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 11244 https://doi.org/10.1021/ja026805j
  29. Lifshitz, E.; Bashout, M.; Kigel, A.; Eisen, M. S.; Berger, S. Nano Lett. 2003, 3, 857 https://doi.org/10.1021/nl0342085
  30. Cho, K.-S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. J. Am. Chem. Soc. 2005, 127, 7140 https://doi.org/10.1021/ja050107s
  31. Jun, Y.; Jung, Y.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 615 https://doi.org/10.1021/ja016887w
  32. Yin, M.; Gu, Y.; Kuskovsky, I. L.; Andelman, T.; Zhu, Y.; Neumark, G. F.; O'Brien, S. J. Am. Chem. Soc. 2004, 126, 6206 https://doi.org/10.1021/ja031696+
  33. Mouge, M.; Kahn, M. L.; Maisonnat, A.; Chaudret, B. Angew. Chem. Int. Ed. 2003, 42, 5321 https://doi.org/10.1002/anie.200351949
  34. Jun, Y.; Casula, M. F.; Sim, J.-H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P. J. Am. Chem. Soc. 2003, 125, 15981 https://doi.org/10.1021/ja0369515
  35. Lee, K.; Seo, W. S.; Park, J. T. J. Am. Chem. Soc. 2003, 125, 3408 https://doi.org/10.1021/ja034011e
  36. Park, J.; Kang, E.; Bae, C. J.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Park, H.-M.; Hyeon, T. J. Phys. Chem. B 2004, 108, 13594 https://doi.org/10.1021/jp048229e
  37. Urban, J. J.; Yun, W. S.; Gu, Q.; Park, H. J. Am. Chem. Soc. 2002, 124, 1186 https://doi.org/10.1021/ja017694b
  38. Cheon, J.; Kang, N.-J.; Lee, S.-M.; Lee, J.-H.; Yoon, J.-H.; Oh, S.- J. J. Am. Chem. Soc. 2004, 126, 1950 https://doi.org/10.1021/ja038722o
  39. Larsen, T.-H.; Sigman, M.; Ghezelbash, A.; Doty, R. C.; Korgel, B. A. J. Am. Chem. Soc. 2003, 125, 5638 https://doi.org/10.1021/ja0342087
  40. Ghezelbash, A.; Sigman, M.; Doty, R. C.; Korgel, B. A. Nano Lett. 2004, 4, 537 https://doi.org/10.1021/nl035067+
  41. Puntes, V. F.; Zanchet, D.; Erdonmez, C. K.; Alivisatos, A. P. J. Am. Chem. Soc. 2002, 124, 12874 https://doi.org/10.1021/ja027262g
  42. Park, J.-I.; Kang, N.-J.; Jun, Y.; Oh, S.-J.; Ri, H. C.; Cheon, J. Chemphyschem 2002, 3, 543 https://doi.org/10.1002/1439-7641(20020617)3:6<543::AID-CPHC543>3.0.CO;2-E
  43. Cao, Y. C. J. Am. Chem. Soc. 2004, 126, 7456 https://doi.org/10.1021/ja0481676
  44. Macintyre, J. E. Dictionary of Inorganic Compounds, 1st ed.; London: New York, 1992
  45. Lu, J.; Qi, P.; Peng, Y.; Meng, Z.; Yang, Z.; Yu, W.; Qian, Y. Chem. Mater. 2001, 13, 2169 https://doi.org/10.1021/cm010049j
  46. Yeh, C.-Y.; Lu, Z. W.; Froyen, S.; Zunger, A. Phys. Rev. B 1992, 46, 10086 https://doi.org/10.1103/PhysRevB.46.10086
  47. Micic, O. I.; Sprague, J. R.; Curtis, C. J.; Jones, K. M.; Machol, J. L.; Nozik, A. J.; Giessen, H.; Fluegel, B.; Mohs, G.; Peyghambarian, N. J. Phys. Chem. 1995, 99, 7754 https://doi.org/10.1021/j100019a063
  48. Hu, J.; Li, L.-S.; Yang, W.; Manna, L.; Wang, L.; Alivisatos, A. P. Science 2001, 292, 2060 https://doi.org/10.1126/science.1060810
  49. Sugimoto, T. Monodispersed Particles, 1st ed.; Elsevier Science: 2001
  50. Alivisatos, A. P. Nature Biotechnol. 2004, 22, 47 https://doi.org/10.1038/nbt927
  51. Chan, W. C. W.; Nie, S. Science 1998, 281, 2016 https://doi.org/10.1126/science.281.5385.2016
  52. Lidke, D. S.; Nagy, P.; Heintzmann, R.; Arndt-Jovin, D. J.; Post, J. N.; Grecco, H. E.; Jares-Erijman, E. A.; Jovin, T. M. Nature Biotechnol. 2004, 22, 198 https://doi.org/10.1038/nbt929
  53. Kim, S. et al. Nature Biotechnol. 2004, 22, 93 https://doi.org/10.1038/nbt920
  54. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science 2002, 298, 1759 https://doi.org/10.1126/science.1077194
  55. Zhao, M.; Beauregard, D. A.; Loizou, L.; Davletov, B.; Brindle, K. M. Nature Med. 2001, 7, 1241 https://doi.org/10.1038/nm1101-1241
  56. Kang, H. W.; Josephson, L.; Petrovsky, A.; Weissleder, R.; Bogdanov Jr., A. Bioconj. Chem. 2002, 13, 122 https://doi.org/10.1021/bc0155521
  57. Artemov, D.; Mori, N.; Okollie, B.; Bhujwalla, A. M. Magn. Reson. Med. 2003, 49, 403 https://doi.org/10.1002/mrm.10406
  58. Perez, J. M.; Josephson, L.; O'Loughlin, T.; Hogemann, D.; Weissleder, R. Nature Biotechol. 2002, 20, 816 https://doi.org/10.1038/nbt720
  59. Weissleder, R.; Lee, A. S.; Khaw, B. A.; Shen, T.; Brady, T. J. Radiology 1992, 182, 381 https://doi.org/10.1148/radiology.182.2.1732953
  60. Weissleder, R.; Lee, A. S.; Fischman, A. J.; Reimer, P.; Shen, T.; Wilkinson, R.; Callahan, R. J.; Brady, T. J. Radiology 1991, 181, 245 https://doi.org/10.1148/radiology.181.1.1887040
  61. Fauconnier, N.; Pons, J. N.; Roger, J.; Bee, A. J. Colloid Interface Sci. 1997, 194, 427 https://doi.org/10.1006/jcis.1997.5125
  62. Jun, Y.; Huh, Y.-M.; Choi, J.; Lee, J.-H.; Song, H.-T.; Kim. S.; Yoon, S.; Kim, K.-S.; Shin, J.-S.; Suh, J.-S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 5732 https://doi.org/10.1021/ja0422155
  63. Huh, Y.-M.; Jun, Y.; Song, H.-T.; Kim, S.; Choi, J.-s.; Lee, J.-H.; Yoon, S.; Kim, K.-S.; Shin, J.-S.; Suh, J.-S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 12387 https://doi.org/10.1021/ja052337c
  64. Veiseh, O.; Sun, C.; Gunn, J.; Kohler, N.; Gabikian, P.; Lee, D.; Bhattarai, N.; Ellenbogen, R.; Sze, R.; Hallahan, A.; Olson, J.; Zhang, M. Nano Lett. 2005, 5, 1003 https://doi.org/10.1021/nl0502569
  65. Hudziak, R. M.; Lewis, G. D.; Winget, M.; Fendly, B. M.; Shepard, H. M.; Ullrich, A. Mol. Cell Biol. 1989, 9, 1165 https://doi.org/10.1128/MCB.9.3.1165
  66. Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S. W.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Nature 2003, 422, 599 https://doi.org/10.1038/nature01551
  67. Niederberger, M.; Bartl, M.-H.; Stucky, G. D. J. Am. Chem. Soc. 2002, 124, 13642 https://doi.org/10.1021/ja027115i
  68. Shen, T.; Weissleder, R.; Papisov, M.; Bogdanov, A. Jr.; Brady, T. Mag. Reson. Med. 1993, 29, 599 https://doi.org/10.1002/mrm.1910290504
  69. Kohli, P.; Martin, C. J. Drug Deliv. Sci. Tech. 2005, 15, 49 https://doi.org/10.1016/S1773-2247(05)50006-6
  70. Zelaya-Angel, O.; Alvaradi-Gol, J. J.; Lozada-Morales, R.; Vargas, H.; Ferreira da Silva, A. Appl. Phys. Lett. 1994, 64, 291 https://doi.org/10.1063/1.111184
  71. Weissleder, R.; Moore, A.; Mahmood, U.; Bhorade, R.; Benveniste, H.; Chiocca, E. A.; Basilion, J. P. Nature Med. 2000, 6, 351 https://doi.org/10.1038/73219
  72. Kim, Y.-H.; Jun, Y.; Jun, B.-H.; Lee, S.-M.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 13656 https://doi.org/10.1021/ja027575b
  73. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947 https://doi.org/10.1126/science.1058120
  74. Gerion, D.; Zitseva, N.; Saw, C.; Casula, M. F.; Fakra, S.; Buuren, T. V.; Galli, G. Nano Lett. 2004, 4, 597 https://doi.org/10.1021/nl035231t
  75. Seo, J.; Jun, Y.; Ko, S. J.; Cheon, J. J. Phys. Chem. B 2005, 109, 5389 https://doi.org/10.1021/jp0501291

Cited by

  1. -relaxation Time Changes According to the Morphological Characteristics of Gold Nanoparticles (GNPs) vol.15, pp.1, 2011, https://doi.org/10.13104/jksmrm.2011.15.1.48
  2. Biological Toxicity Changes of Mercaptoacetic Acid and Mercaptopropionic Acid Upon Coordination onto ZnS:Mn Nanocrystal vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.657
  3. Syntheses and Characterizations of Serine and Threonine Capped Water-Dispersible ZnS:Mn Nanocrystals and Comparison Study of Toxicity Effects on the growth of E. coli by the Methionine, Serine, Threonine, and Valine Capped ZnS:Mn Nanocrystals vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1741
  4. bacteria vol.28, pp.4, 2013, https://doi.org/10.1002/bio.2477
  5. Biological Toxicities and Aggregation Effects of ʟ-Glycine and ʟ-Alanine Capped ZnS:Mn Nanocrystals in Aqueous Solution vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1169
  6. Nanocrystals and Their Biomedical Applications vol.37, pp.44, 2006, https://doi.org/10.1002/chin.200644215
  7. Colloidal Strategies for Preparing Oxide-Based Hybrid Nanocrystals vol.2008, pp.6, 2008, https://doi.org/10.1002/ejic.200701047