DOI QR코드

DOI QR Code

Stability Rating Tests for Optimization of Axial Baffle Length

배플 길이의 최적화를 위한 연소 안정성 평가 시험

  • 김홍집 (한국항공우주연구원 엔진그룹) ;
  • 이광진 (한국항공우주연구원 엔진그룹) ;
  • 서성현 (한국항공우주연구원 엔진그룹) ;
  • 김승한 (한국항공우주연구원 엔진그룹) ;
  • 한영민 (한국항공우주연구원 엔진그룹) ;
  • 설우석 (한국항공우주연구원 엔진그룹)
  • Published : 2005.01.01

Abstract

To optimize and limit the axial length of the baffle of the KSR-III engine, stability rating tests using pulse gun as one of artificial disturbance devices have been done. Generally a rocket engine can be considered to be dynamically stable if a certain imposed external perturbation or pressure oscillation in rocket combustion chamber could be suppressed within a short time period. Decay time and other parameters for the evaluation of stabilization ability of an engine to external perturbation have been analyzed to quantify stabilization capacity of engine, in other words, dynamic stability margin. Baffle not covering flame zone enough which can be considered as collision region of injector wasn't be able to suppress external perturbation sufficiently. The limit of combustion stability margin of engine is assumed to be 50 mm length baffle of the KSR-III engine.

References

  1. Harrje, D. T. and Reardon, F. H. (eds.), 'Liquid Propellant Rocket Combustion Instability,' NASA SP-194, 1972
  2. Laudien, E., Pongratz, R., Pierro, R., and Preclik, D., 'Experimental Procedures Aiding the Design of Acoustic Cavities,' in Liquid Rocket Engine Combustion Instability (Yang, V. and Anderson, W. E., eds), Progress in Astronautics and Aeronautics, Vol. 169, AIAA, Washington DC, 1995, pp. 377-399
  3. Agarkov, A. F., Denisov, K. P., Dranovsky, M. L., Zavorohin, I. A., Ivanov, V. N., Pikalov, V. P., and Shibanov, A. A., 'Injector Flame Stabilization Effects on Combustion Instability,' in Liquid Rocket Engine Combustion Instability (Yang, V. and Anderson, W. E., eds), Progress in Astronautics and Aeronautics, Vol. 169, AIAA, Washington DC, 1995, pp. 281-305
  4. NASA, 'Liquid Rocket Engine Combustion Stabilization Devices,' NASA SP-8113, 1974
  5. Oefelein, J. C. and Yang, V., 'Comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engines,' Journal of Propulsion and Power, Vol. 9, No. 5, 1993, pp. 657-677 https://doi.org/10.2514/3.23674
  6. 손채훈, 설우석, 이수용, 김영목, 이대성, '액체 로켓엔진에서 연소 안정화기구의 적용 효과,' 한국항공우주학회지, 제 31권, 제 6호, 2003, pp. 79-87
  7. 한영민, 고영성, 김승한, 이광진, 정용갑, 설우석, 이수용, '실물형 액체로켓엔진에서 Pulse Gun을 이용한 연소안정성평가 시험,' 제 4회 우주발사체 심포지움 논문집, 2003, pp. 33-37
  8. 손채훈, 김영목, 'KSR-III 로켓엔진의 연소안정성 평가,' 한국항공우주학회지, 제 32권, 제 3호, 2004, pp. 95-101
  9. Denisov et al., 'KARI Combustion Chamber Firing Tests,' Report under Contract No. KARI-01-032, Phase 4, NIICHIMMASH, 2002
  10. 서성현, 고영성, 이광진, 박성진, 이수용, '액체 로켓엔진 연소 안정성 평가를 위한 압력 교란 장치 특성 연구,' 한국항공우주학회지, 제 31권, 제 7호, 2003, pp. 94-99
  11. Wicker, J. M., Yoon, M. W., and Yang, V., 'Linear and Non-linear Pressure Oscillations in Baffled Combustion Chambers,' Journal of Sound and Vibration, Vol. 184, 1995, pp. 141-171 https://doi.org/10.1006/jsvi.1995.0309
  12. Kim, S.-K., Kim, H. J., Seol, W. S., and Sohn, C. H., 'Acoustic Stability Analysis of Liquid Propellant Rocket Combustion Chambers,' AIAA Paper, 2004-4142, 2004
  13. Sohn, C. H., Chung, S. H., Kim, J. S., and Williams, F. A., 'Acoustic Response of Droplet Flames to Pressure Oscillations,' AIAA Journal, Vol. 34, No. 9, 1996, pp. 1847-1854 https://doi.org/10.2514/3.13317
  14. Kim, H. J., Sohn, C. H., Chung, S. H., and Kim, J. S., 'Nonlinear Acoustic-Pressure Responses of Oxygen Droplet Flames Burning in Caseous Hydrogen,' KSME Int'l Journal, Vol. 15, No. 4, 2001, pp. 510-521
  15. 한영민, 김승한, 문일윤, 김홍집, 김종규, 설우석, 이수용, 권순탁, 이창진, '충돌형 분사기 형태의 액체로켓엔진용 가스발생기 연소성능시험,' 한국추진공학회지, 제 8권, 제 2호, 2004, pp. 10-17