DOI QR코드

DOI QR Code

NEW RESULTS ABOUT ORTHOGONALITY PRESERVING MAPS

  • MARONI PASCAL
  • Published : 2005.02.01

Abstract

The Alaway's theorem on orthogonality preserving maps [1] is revisited and we provide a new proof of this result, through an original separation property involving regular forms. In fact, we show a light more general result concerning weakly orthogonal sequences(see section 3).

Keywords

orthogonal polynomials;regular forms;isomorphisms

References

  1. W. R. Allaway, Orthogonality preserving maps and the Laguerre functional, Proc. Amer. Math. Soc. 100 (1987), 82-86
  2. W. A. Al-Salam and A. Verma, Some orthogonality preserving operators, Proc. Amer. Math. Soc. 23 (1969), 136-139 https://doi.org/10.2307/2037503
  3. W.A. Al-Salam and A. Verma, Orthogonality preserving operators, Accad. Naz. Lincei 58 (1975), 833-838
  4. T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New-York, 1978
  5. P. Maroni, Une caracterisation des polynomes orthogonaux semi-classiques, C. R. Acad. Sci. Paris Ser. I, 301 (1985), no. 6, 269-272
  6. P. Maroni, Sur la suite de polynomes orthogonaux associee a la forme u = $\delta_c\;+\;\lambda(x-c)^{-1}L$, Period. Math. Hung. 21 (1990), 223-248 https://doi.org/10.1007/BF02651091
  7. P. Maroni, Une theorie algebrique des polynomes orthogonaux. Application aux polynomes orthogonaux semi-classiques, Ann. Comput. Appl. Math. 9 (1991), 95-130
  8. P. Maroni, Variations around classical orthogonal polynomials. Connected problems J. Comput. Appl. Math. 48 (1993), 133-155 https://doi.org/10.1016/0377-0427(93)90319-7