Cloning and Structural Analysis of bfmo Operon in Methylophaga aminosulfidovorans SK1

Methylophaga aminosulfidovorans SKI bfmo 오페론의 클로닝 및 구조 분석

  • Lim Hyun Sook (Graduate School of Education, Chosun University) ;
  • Goo Jae Whan (Department of Environmental engineering, Chosun University) ;
  • Kim Lee Hyun (Graduate School of Education, Chosun University) ;
  • Kim Si Wouk (Department of Environmental engineering, Chosun University) ;
  • Cho Eun Hee (Department of Biology Education, Chosun University)
  • Published : 2005.03.01


Methylophaga aminosulfidovorans SK1 (KCTC 10323 BP) can utilize trimethylamine as a sole carbon, nitrogen, and energy source. The bacterial flavin-containing monooxygenase (bFMO) gene was identified in the strain and the recombinant enzyme expressed in E. coli oxidized trimethylamine. To study the function and regulation of the bfmo, over 8,000 nucleotide sequences of the neighboring regions including the bfmo were determined. Three open reading frames proceeding to the bfmo gene encoded analogues to highly conserved nitrate/nitrite sensing two-component system regulators and a methyl accepting protein. Two small open reading frames just downstream of the bfmo gene showed no similar proteins of known functions but the sequences were conserved among other bacteria. Reverse transcription-polymerase chain reaction analysis showed that the six putative genes consisted of three transcription units. The three regulatory genes located upstream of the bfmo gene formed two separate transcription units. The bfmo and the two downstream genes were transcribed from a single promoter.


bacterial operon;flavin-containing monooxygenases(FMO);Methylophaga;methylotrophs;RT-PCR


  1.  Doronina, N.V., T.D. Darmaeva, and Y.A. Trotsenko. 2003. Methylophaga natronica sp. nov., a new alkaliphilic and moderately halophilic, restricted-facultatively methylotrophic bacterium from Soda Lake of the Southern Transbaikal Region. Syst. Appl. Microbiol. 26, 382-389
  2. Janvier, M. and P.A.D. Grimont, 1995. The genus Methylophaga, a new line of descent within phylogenetic branch $\gamma$ of Proteobacteria. Microbial Paris. 146, 543-550
  3.  Kim, S.G., H.S. Bae, and S.T. Lee, 2001. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways. Arch Microbiol. 176, 271-277
  4. Maris, A.E., M.R. Sawaya, M. Kaczor-Grzeskowiak, M.R. Jarvis, S.M. Bearson, M.L. Kopka, I. Schroder, R.P. Gunsalus, and R.E. Dickerson, 2002. Dimerization allows DNA target site recognition by the NarL response regulator. Nat. Struct .Biol. 9, 771-8
  5.  Ziegler, D.M. 1988. Flavin-containing monooxygenases: catalytic mechanism and substrate specificities. Drug Metab. Rev. 19, 1-32
  6. de Zwart, J.M.M., P.N. Nelisse, and J.G. Kuenen, 1996. Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from microbial mat. FEMS Microbiol. Ecol. 20, 261-270
  7. Janvier, M., C. Frehel, F. Grimont, and F. Gasser, 1985. Methylophaga marina gen. nov., sp. nov. and Methylophaga thalassica sp. nov., marine methylotrophs. Int. J. Syst. Bacteriol. 35, 131-139
  8.  Yancey, P.H., W.R. Blake, and J. Conley, 2002. Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133, 667-76
  9. Barrett, E.L. and H.S. Kwan. 1985. Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol. 39, 131-149
  10.  Thompson, J.D., D.G. Higgins, and T.J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680
  11.  Urakami, T. and K. Komagata, 1987. Characterization of species of marine methylotrophs of the genus Methylophagn. Int. J. Syst. Bacteriol. 37, 402-406
  12.  Vedenina, I. and N.I. Govorukhina, 1988. Formation of a methylotrophic denitrifying biocenosis in a system of sewage treatment for nitrates. Mikrobiologia. 57, 320-328
  13. Doronina, N.V., T.D. Darmaeva, and Y.A. Trotsenko. 2003. Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from the East Mongolian saline soda lake. Int. J. Syst. Evol. Microbiol. 53, 223-229
  14.  Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI- BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402
  15. Anthony, C. 1982. The Biochemistry of methylotrophs. Academic press, New York
  16. Dahl, J.S., Mehta, R.J. and Hoare, D.S. 1972. New obligate methylotroph. J. Bacteriol. 109(2), 916-921
  17. Lee, A.I., A. Delgado, and R.P. Gunsalus, 1999. Signal-dependent phosphorylation of the membrane-bound NarX two-component sensor-transmitter protein of Escherichia coli: nitrate elicits a superior anion ligand response compared to nitrite. J. Bacteriol. 181, 5309-5316
  18.  Zhao, Y., S.K. Christensen, C. Fankhauser, J.R. Cashman, J.D. Cohen, D. Weigel, and J. Chory, 2001. A role for flavin monooxygenase- like enzymes in auxin biosynthesis. Science. 291, 306-309
  19. Baikalov, I., I. Schroder, M. Kaczor-Grzeskowiak, K. Grzeskowiak, R.P. Gunsalus and R.E. Dickerson. 1996. Structure of the Escherichia coli response regulator NarL. Biochemistry. 35, 11053-1161
  20. Doronina, N.V., T.D. Li, E.G. Ivanova, O.V. Rodionova, and Y.A. Trotsenko, 2004. Methylophaga murata sp. nov. - haloalcalotolerant aerobic methylotroph from destroyed marble. Unpublished (as of 20 August 2004)
  21. Koh, M., C.S. Kim, Y.A. Kim, H.S. Choi, E.H. Cho, E. Kim, Y.M. Kim and S.W. Kim, 2002. Properties of electron carriers in the process of methanol oxidation in a new restricted facultative marine methylotrophic bacterium, Methylophaga sp. MP. J. Microbiol. Biotechnol. 12, 476-482
  22. Schroder, I., R. Cavicchioli, and R.P. Gunsalus, 1994. Phosphorylation and dephosphorylation of the NarQ, NarX, and NarL proteins of the nitrate-dependent two-component regulatory system of Escherichia coli. J. Bacteriol. 176, 4985-92
  23.  Stackebrandt, E., R.G.E. Murray, and H.G. Trtiper, 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the 'purple bacteria and their relatives'. Int. J. Syst. Bacteriol. 38, 321-325
  24. Tsuji, K., H.C. Tsien, R.S. Hanson, S.R. DePalma, R. Sehoitz, and S. LaRoche, 1990. 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J. Gen. Microbiol. 136, 1-10
  25.  Hartig, E., U. Schiek, K.U. Vollack, and W.G. Zumft, 1999. Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli. J. Bacteriol. 181, 3658-65
  26. Guest, I. and D.R. Varma, 1992. Teratogenic and macromolecular synthesis inhibitory effects of trimethylamine on mouse embryos in culture. J. Toxicol Environ Health. 36, 27-41
  27. Moune, S., N. Manac'h, A. Hirschler, P. Caumette, J.C. Willison, and R. Matheron, 1999. Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter. Int. J. Syst. Bacteriol. 49 Pt 1, 103-112
  28. Choi, H.S., J.K. Kim, E.H. Cho, Y.C. Kim, J.I. Kim, and S.W. Kim. 2003. A novel flavin-containing monooxygenase from Methylophaga sp strain SK1 and its indigo synthesis in Escherichia coli. Biochem Biophys Res. Commun. 306(4), 930-936
  29.  Eldridge, A.M., H.S. Kang, E. Johnson, R. Gunsalus, F.W. Dahlquist, 2002. Effect of phosphorylation on the interdomain interaction of the response regulator, NarL. Biochemistry. 41, 15173-15180