DOI QR코드

DOI QR Code

The MIN-N family of pure-displacement, triangular, Mindlin plate elements

  • Liu, Y. Jane (Department of Civil and Environmental Engineering, Tennessee Technological University) ;
  • Riggs, H.R. (Department of Civil and Environmental Engineering, University of Hawaii)
  • Received : 2004.01.13
  • Accepted : 2004.11.03
  • Published : 2005.02.20

Abstract

In recent years the pure displacement formulation for plate elements has not been as popular as other formulations. We revisit the pure displacement formulation for shear-deformable plate elements and propose a family of N-node, displacement-compatible, fully-integrated, pure-displacement, triangular, Mindlin plate elements, MIN-N. The development has been motivated by the relative simplicity of the pure displacement formulation and by the success of the existing 3-node plate element, MIN3. The formulation of MIN3 is generalized to obtain the MIN-N family, which possesses complete, fully compatible kinematic fields, in which the interpolation functions for transverse displacement are one degree higher than those for rotations. General element-level formulas for the thin-limit Kirchhoff constraints are developed. The 6-node, 18 degree-of-freedom element MIN6, with cubic displacement and quadratic rotations, is implemented and tested extensively. Numerical results show that MIN6 exhibits good performance for both static and dynamic analyses in the linear, elastic regime. The results illustrate that the fully-integrated MIN6 element has excellent performance in the thin limit, even for coarse meshes, and that it does not require shear relaxation.

References

  1. ANSYS. (1998), Ansys User's Manual, v. 5.5
  2. Auricchio, F. and Taylor, R.L. (1994), 'A shear deformable plate element with an exact thin limit', Comput. Meth. Appl. Mech. Eng., 118, 393-412 https://doi.org/10.1016/0045-7825(94)90009-4
  3. Bathe, K.J., Brezzi, F. and Cho, S.W. (1989), 'The MITC7 and MITC9 plate bending element', Comput. Struct., 32, 797-814 https://doi.org/10.1016/0045-7949(89)90365-9
  4. Bathe, K.J. and Dvorkin, E.N. (1985), 'A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation', Int. J. Num. Meth. Eng., 21, 367-383 https://doi.org/10.1002/nme.1620210213
  5. Batoz, J.L. (1982), 'An explicit formulation for an efficient triangular plate-bending element', Int. J. Num. Meth. Eng., 18, 1077-1089 https://doi.org/10.1002/nme.1620180711
  6. Batoz, J.L. and Lardeur, P. (1989), 'A discrete shear triangular nine d.o.f. element for the analysis of thick to very thin plates', Int. J. Num. Meth. Eng., 28, 533-560 https://doi.org/10.1002/nme.1620280305
  7. Belytschko, T, Stolarski, H. and Carpenter, N. (1984), 'A $C^0$ triangular plate element with one-point quadrature', Int. J. Num. Meth. Eng., 20, 787-802 https://doi.org/10.1002/nme.1620200502
  8. Belytschko, T. and Wong, B.K. (1989), 'Assumed strain stabilization procedure for the 9-node Lagrange shell element', Int. J. Num. Meth. Eng., 28, 385-414 https://doi.org/10.1002/nme.1620280210
  9. Brezzi, F., Bathe, K.J. and Fortin, M. (1989), 'Mixed-interpolated elements for Reissner/Mindlin plates', Int. J. Num. Meth. Eng., 28,1787-1801 https://doi.org/10.1002/nme.1620280806
  10. Choi, C.K. and Park, Y.M. (1999), 'Quadratic NMS Mindlin-plate-bending element', Int. J. Num. Meth. Eng., 46, 1273-1289 https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1273::AID-NME754>3.0.CO;2-N
  11. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2002), Concepts and Applications of Finite Element Analysis, John Wiley & Sons
  12. Crisfield, M.A. (1984), 'A quadratic Mindlin element using shear constraints', Comput. Struct., 18(5), 833-852 https://doi.org/10.1016/0045-7949(84)90030-0
  13. Crisfield, M.A. (1986), Finite Elements and Solution Procedures for Structural Analysis, Pineridge Press, Swansea, U.K.
  14. de Veubeke, B.F. (1965), 'Displacement and equilibrium models in the finite element method', in Stress Analysis: Recent Developments in Numerical and Experimental Methods, O.C. Zienkiewicz and G.S. Holister, eds., John Wiley & Sons, London, 145-197
  15. Greimann, L.F. and Lynn, P.P. (1970), 'Finite element analysis of plate bending with transverse shear deformation', Nucl. Eng. Des., 14,223-230 https://doi.org/10.1016/0029-5493(70)90101-9
  16. Hughes, T.J.R. and Cohen, M. (1978), 'The 'heterosis' finite element for plate bending', Comput. Struct., 9, 445-450 https://doi.org/10.1016/0045-7949(78)90041-X
  17. Hughes, T.J.R., Taylor, R.L. and Kanoknukulchai, W. (1977), 'A simple and efficient finite element for plate bending', Int. J. Num. Meth. Eng., 11, 1529-1543 https://doi.org/10.1002/nme.1620111005
  18. Hughes, TJ.R. and Tezduyar, T.E. (1981), 'Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element', J. Appl. Mech., 48, 587-596 https://doi.org/10.1115/1.3157679
  19. Ibrahimbegovic, A. and Frey, F. (1994), 'Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: Linearized kinematics', Int. J. for Numerical and Analytical Methods in Geomechanics, 37, 3659-3683
  20. Liu, J., Riggs, H.R. and Tessler, A. (2000), 'A four-node, shear-deformable shell element developed via explicit Kirchhoff constraints', Int. J. Num. Meth. Eng., 49(8), 1065-1086 https://doi.org/10.1002/1097-0207(20001120)49:8<1065::AID-NME992>3.0.CO;2-5
  21. Liu, Y.J. (2002), 'Development of the MIN-N family of triangular anisoparametric Mindlin plate elements', Ph.D. dissertation, University of Hawaii at Manoa, Honolulu
  22. Liu, Y.J. and Buchanan, G.R. (2004), 'Free vibration of stepped cantilever Mindlin plates', J. Sound Vib., 271, 1083-1092 https://doi.org/10.1016/S0022-460X(03)00777-6
  23. Liu, Y.J., Riggs, H.R. and Tessler, A. (1998), 'A 4-node anisoparametric Mindlin plate element based on the Tessler 3-node element', UHM/CE/98-01, University of Hawaii at Manoa, Honolulu
  24. MacNeal, R.H. (1978), 'A simple quadrilateral shell element', Comput. Struct., 8, 175-183 https://doi.org/10.1016/0045-7949(78)90020-2
  25. MacNeal, R.H. (1982), 'Derivation of element stitfuess matrices by assumed strain distributions', Nucl. Eng. Des., 70, 3-12 https://doi.org/10.1016/0029-5493(82)90262-X
  26. MacNeal, R.H. and Harder, R.L. (1985), 'A proposed standard set of problems to test finite element accuracy', Finite Elem. Anal. Design, 1, 3-20 https://doi.org/10.1016/0168-874X(85)90003-4
  27. Morley, L.S.D. (1963), Skew Plates and Structures, MacMillan, New York
  28. Pugh, E.D.L., Hinton, E. and Zienkiewicz, O.C. (1978), 'A study of quadrilateral plate bending elements with 'reduced' integration', Int. J. Num. Meth. Eng., 12, 1059-1079 https://doi.org/10.1002/nme.1620120702
  29. Riggs, H.R., Tessler, A and Chu, H. (1997), 'C1-continuous stress recovery in finite element analysis', Comput. Meth. Appl. Mech. Eng., 143(3/4), 299-316 https://doi.org/10.1016/S0045-7825(96)01151-6
  30. Roark, R.J. and Young, W.C. (1975), Formulas for Stress and Strain, McGraw-Hill Book Company, New York
  31. Sheikh, AH. and Dey, P. (2001), 'A new triangular element for the analysis of thick and thin plates', Comm. Num. Meth. Engr., 17, 667-673 https://doi.org/10.1002/cnm.440
  32. Sze, K.Y. (1997), 'Quadratic triangular $C^0$ plate bending element', Int. J. Num. Meth. Eng., 40, 937-95l https://doi.org/10.1002/(SICI)1097-0207(19970315)40:5<937::AID-NME96>3.0.CO;2-N
  33. Sze, K.Y. and Zhu, D. (1998), 'A quadratic assumed natural strain triangular element for plate bending analysis', Comm. Num. Meth. Engr., 14, 1013-1025 https://doi.org/10.1002/(SICI)1099-0887(199811)14:11<1013::AID-CNM204>3.0.CO;2-V
  34. Taylor, R.L. and Auricchio, F. (1993), 'Linked interpolation for Reissner-Mindlin plate elements: Part II. A simple triangle', Int. J. Num. Meth. Eng., 36, 3057-3066 https://doi.org/10.1002/nme.1620361803
  35. Tessler, A. (1982), 'On a conforming, Mindlin-type plate element', in The Mathematics of Finite Elements and Applications IV, J.R. Whiteman, ed., Academic Press, London, 119-126
  36. Tessler, A. (1985), 'A priori identification of shear locking and stiffening in triangular Mindlin elements', Comput. Meth. Appl. Mech. Eng., 53(2), 183-200 https://doi.org/10.1016/0045-7825(85)90005-2
  37. Tessler, A. (1990), 'A $C^0$-anisoparametric three-node shallow shell element', Comput. Meth. Appl. Mech. Eng., 78,89-103 https://doi.org/10.1016/0045-7825(90)90154-E
  38. Tessler, A. and Dong, S.B. (1981), 'On a hierarchy of conforming Timoshenko beam elements', Comput. Struct., 14(3-4), 335-344 https://doi.org/10.1016/0045-7949(81)90017-1
  39. Tessler, A. and Hughes, T.J.R. (1983), 'An improved treatment of transverse shear in the Mindlin-type four-node quadrilateral element', Comput. Meth. Appl. Mech. Eng., 39, 311-335 https://doi.org/10.1016/0045-7825(83)90096-8
  40. Tessler, A. and Hughes, T.J.R. (1985), 'A three-node Mindlin plate element with improved transverse shear', Comput. Meth. Appl. Mech. Eng., 50, 71-101. https://doi.org/10.1016/0045-7825(85)90114-8
  41. Tessler, A., Riggs, H.R., Freese, C.E. and Cook, a.M. (1998), 'An improved variational method for finite element stress recovery and a posteriori error estimation', Comput. Meth. Appl. Mech. Eng., 155, 15-30 https://doi.org/10.1016/S0045-7825(97)00135-7
  42. Tessler, A, Riggs, H.R. and Macy, S.C. (1994), 'A variational method for finite element stress recovery and error estimation', Comput. Meth. Appl. Mech. Eng., 111, 369-382 https://doi.org/10.1016/0045-7825(94)90140-6
  43. Xu, Z. (1992), 'A thick-thin triangular plate element', Int. J. Num. Meth. Eng., 33, 963-973 https://doi.org/10.1002/nme.1620330506
  44. Yazdani, A.A., Riggs, H.R. and Tessler, A. (2000), 'Stress recovery and error estimation for shell structures', Int. J. Num. Meth. Eng., 47, 1825-1840 https://doi.org/10.1002/(SICI)1097-0207(20000420)47:11<1825::AID-NME820>3.0.CO;2-6
  45. Zienkiewicz, O.C. and Lefebvre, D. (1988), 'A robust triangular plate bending element of the Reissner-Mindlin type', Int. J. Num. Meth. Eng., 26, 1169-1184 https://doi.org/10.1002/nme.1620260511
  46. Zienkiewicz, O.C., Xu, Z., Zeng, L.F., Samuelsson, A. and Wiberg, N.E. (1993), 'Linked interpolation for Reissner-Mindlin plate elements: Part I. A simple quadrilateral', Int. J. Num. Meth. Eng., 36, 3043-3056 https://doi.org/10.1002/nme.1620361802

Cited by

  1. Higher-order linked interpolation in triangular thick plate finite elements vol.31, pp.1, 2014, https://doi.org/10.1108/EC-03-2012-0056
  2. On the application of piezolaminated composites to diaphragm micropumps vol.99, 2013, https://doi.org/10.1016/j.compstruct.2012.11.041
  3. Higher-order hybrid stress triangular Mindlin plate element vol.58, pp.6, 2016, https://doi.org/10.1007/s00466-016-1322-y
  4. Higher-order linked interpolation in quadrilateral thick plate finite elements vol.51, 2012, https://doi.org/10.1016/j.finel.2011.10.003