DOI QR코드

DOI QR Code

MODIFICATION TO A BOUND FOR RANDOM ERROR CORRECTION WITH LEE WEIGHT

  • JAIN SAPNA (Department of Mathematics Miranda House University of Delhi)
  • Published : 2005.04.01

Abstract

In [1], Sharma and Goel obtained a bound for random error correcting codes with Lee weight considerations. The purpose of this paper is to first point out a discrepancy in this result and then give a correct version of the same, improving upon the bound tremendously.

References

  1. B. D. Sharma and S. N. Goel, A note on bounds for Burst correcting codes with Lee weight consideration, Inform. and Control 33 (1977), 210-216 https://doi.org/10.1016/S0019-9958(77)80002-8
  2. E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968

Cited by

  1. Correction of CT burst array errors in the generalized-lee-RT spaces vol.26, pp.8, 2010, https://doi.org/10.1007/s10114-010-8508-6
  2. Array Codes in the Generalized Lee-RT Pseudo-Metric (GLRTP-Metric) vol.17, pp.spec01, 2010, https://doi.org/10.1142/S1005386710000702
  3. ON THE GENERALIZED-LEE-RT-PSEUDO-METRIC (THE GLRTP-METRIC) ARRAY CODES CORRECTING BURST ERRORS vol.01, pp.01, 2008, https://doi.org/10.1142/S1793557108000138
  4. Extended Varshamov-Gilbert-Sacks Bound for Linear Lee Weight Codes vol.19, pp.spec01, 2012, https://doi.org/10.1142/S1005386712000752
  5. On a Sufficient Condition to Attain Minimum Square Distance in Euclidean Codes vol.18, pp.03, 2011, https://doi.org/10.1142/S100538671100037X
  6. SIMULTANEOUS RANDOM ERROR CORRECTION AND BURST ERROR DETECTION IN LEE WEIGHT CODES vol.30, pp.1, 2008, https://doi.org/10.5831/HMJ.2008.30.1.033
  7. Sufficient Condition over the Number of Parity Checks for Burst Error Detection/Correction in Linear Lee Weight Codes vol.14, pp.02, 2007, https://doi.org/10.1142/S1005386707000338
  8. Singleton's Bound in Euclidean Codes vol.17, pp.spec01, 2010, https://doi.org/10.1142/S1005386710000714
  9. Construction of Lee Weight Codes Detecting CT-Burst Errors and Correcting Random Errors vol.18, pp.spec01, 2011, https://doi.org/10.1142/S1005386711000733