DOI QR코드

DOI QR Code

ON THE STABILITY OF FUNCTIONAL EQUATIONS IN n-VARIABLES AND ITS APPLICATIONS

  • Published : 2005.04.01

Abstract

In this paper we investigate a generalization of the Hyers-Ulam-Rassias stability for a functional equation of the form $f(\varphi(X))\;=\;\phi(X)f(X)$, where X lie in n-variables. As a consequence, we obtain a stability result in the sense of Hyers, Ulam, Rassias, and Gavruta for many other equations such as the gamma, beta, Schroder, iterative, and G-function type's equations.

References

  1. H. Alzer, Remark on the stability of the Gamma functional equation, Results Math. 35 (1999), 199-200 https://doi.org/10.1007/BF03322812
  2. E. W. Barnes, The theory of the G-function, Quart. J. Math. 31 (1899), 264- 314
  3. D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237 https://doi.org/10.1090/S0002-9904-1951-09511-7
  4. P. Gavruta, A Generalization of the Hyers-Ulam-Rassias stability of approxi- mately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436 https://doi.org/10.1006/jmaa.1994.1211
  5. R. Ger, Superstability is not natural, Rocznik Nauk.-Dydakt. Prace Mat. 159 (1993), 109-123
  6. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224 https://doi.org/10.1073/pnas.27.4.222
  7. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of the Functional Equations in Several Variables, Birkhauser Verlag, 1998
  8. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153 https://doi.org/10.1007/BF01830975
  9. G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of Ã-additive mappings, J. Approx. Theory 72 (1993), 131-137 https://doi.org/10.1006/jath.1993.1010
  10. K. W. Jun, G. H. Kim, Y. W. Lee, Stability of generalized Gamma and Beta functional equations, Aequationes Math. 60 (2000), 15-24 https://doi.org/10.1007/s000100050132
  11. S.-M. Jung, On the general Hyers-Ulam stability of gamma functional equation, Bull. Korean Math. Soc. 34 (1997), 437-446
  12. S.-M. Jung, On the modified Hyers-Ulam-Rassias stability of the functional equation for gamma function, Mathematica 39 (1997), 233-237
  13. S.-M. Jung, On the stability of gamma functional equation, Results Math. 33 (1998), 306-309 https://doi.org/10.1007/BF03322090
  14. G. H. Kim, On the stability of generalized Gamma functional equation, Internat. J. Math. & Math. Sci. 23 (2000), 513-520 https://doi.org/10.1155/S0161171200003598
  15. G. H. Kim, A generalization of the Hyers-Ulam-Rassias stability of the Beta functional equation, Publ. Math. Debrecen 59 (2001), 111-119
  16. G. H. Kim, A generalization of Hyers-Ulam-Rassias stability of a G-functional equation, Math. Inequal. Appl., to appear
  17. G. H. Kim, Y.W. Lee, The stability of the beta functional equation, Studia Univ. 'Babes-Bolyai', Mathematica 40 (2000), 89-96
  18. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300 https://doi.org/10.2307/2042795
  19. Th. M. Rassias, On the modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), 106-113 https://doi.org/10.1016/0022-247X(91)90270-A
  20. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130 https://doi.org/10.1023/A:1006499223572
  21. Th. M. Rassias, On the stability of functional equations in Banach space, J. Math. Anal. Appl. 251 (2000), 264-284 https://doi.org/10.1006/jmaa.2000.7046
  22. Th. M. Rassias (ed.), Functional Equations and Inequalities, Kluwer Academic Publishers, Dordrecht, 2000
  23. Th. M. Rassias (ed.), Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 2003
  24. Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993 https://doi.org/10.2307/2159617
  25. Th. M. Rassias and J. Tabor, Stability of Mappings of Hyers-Ulam Type, Hadronic Press Inc., Florida, 1994
  26. T. Trip, On the stability of a general gamma-type functional equation, Publ. Math. Debrecen 60 (2002), 47-62
  27. S. M. Ulam, Problems in Modern Mathematics, Chap. VI , Science editions, Wiley, New York, 1964