DOI QR코드

DOI QR Code

THE MINIMAL FREE RESOLUTION OF CERTAIN DETERMINANTAL IDEA

  • Published : 2005.04.01

Abstract

Let $S\;=\;R[\chi_{ij}\mid1\;{\le}\;i\;{\le}\;m,\;1\;{\le}\;j\;{\le}\;n]$ be the polynomial ring over a noetherian commutative ring R and $I_p$ be the determinantal ideal generated by the $p\;\times\;p$ minors of the generic matrix $(\chi_{ij})(1{\le}P{\le}min(m,n))$. We describe a minimal free resolution of $S/I_{p}$, in the case m = n = p + 2 over $\mathbb{Z}$.

References

  1. K. Akin, D. A. Buchsbaum, and J.Weyman, Resolutions of determinantal ideals, Adv. Math. 44 (1981), 1-30 https://doi.org/10.1016/0001-8708(82)90063-9
  2. K. Akin, D. A. Buchsbaum, Schur functors and Schur complexes, Adv. Math. 44 (1982), 207-278 https://doi.org/10.1016/0001-8708(82)90039-1
  3. D. A. Buchsbaum, A New Construction of the Eagon-Northcott Complex, Adv. Math. 34 (1979), 58-76 https://doi.org/10.1016/0001-8708(79)90064-1
  4. D. A. Buchsbaum, Generic Free Resolutions and Schur Complexes, Brandeis Lecture Notes, Brandeis Univ. Press 3 (1983)
  5. D. A. Buchsbaum and D. S. Rim, A Generalized Koszul Complex. II, Proc. Amer. Math. Soc 16 (1965), 197-225
  6. J. A. Eagon, and D. G. Hochster, Cohen-Macaulay rings, invariant theory and the generic perfection of determinantal loci, Amer. J. Math 93 (1971), 1020- 1058 https://doi.org/10.2307/2373744
  7. J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188- 204 https://doi.org/10.1098/rspa.1962.0170
  8. M. Hashimoto, Determinantal ideals without minimal free resolutions, Nagoya Math. J 118 (1990), 203-216 https://doi.org/10.1017/S0027763000003081
  9. M. Hashimoto, Resolutions of Determinantal Ideals : t-Minors of (t+2)${\times}$n Matrices, J. Algebra 142 (1991), 456-491 https://doi.org/10.1016/0021-8693(91)90320-8
  10. M. Hashimoto and K. Kurano, Resolutions of Determinantal ideals: n-minors of (n + 2)-Square Matrices, Adv. Math. 94 (1992), 1-66 https://doi.org/10.1016/0001-8708(92)90032-G
  11. A. Lascoux, Syzygies des varietes determinantales, Adv. Math. 30 (1978), 202-237 https://doi.org/10.1016/0001-8708(78)90037-3
  12. P. Roberts, A minimal free complex associated to minors of a matrix, preprint
  13. P. Pragacz and J. Weyman, Complexes associated with trace and evaluation: another approach to Lascoux's resolution, Adv. Math. 57 (1985), 163-207 https://doi.org/10.1016/0001-8708(85)90052-0