DOI QR코드

DOI QR Code

THE MASS FORMULA OF ORDERS OVER A DYADIC LOCAL FIELD

  • JUN, SUNG-TAE (Division of Mathematics and Computer science Konkuk University) ;
  • KIM, IN-SUK (Division of Mathematics and Informational Statistics Wonkwang University)
  • Published : 2005.04.01

Abstract

In this paper, we study the arithmetic properties of orders in a quaternion algebra over a dyadic local field and we find the mass formula of orders.

References

  1. A. Atkin and J. Lehner, Hecke operators on $\Gamma o$(N), Math. Ann. 185 (1970),134-160 https://doi.org/10.1007/BF01359701
  2. J. Brezinski, On automorphisms of Quaternion orders J. Reine Angew. Math. 43 (1992), 102-109
  3. M. Eichler, The basis problem for modular forms and the traces of Hecke operators, Springer-Verlag, Lecture Notes in Math. 320 (1972), 75-151
  4. H. Hijikata, Explicit formula of the traces of the Hecke operators for ${\Gamma}_0$(N), J. Math. Soc. Japan 26 (1974), 56-82 https://doi.org/10.2969/jmsj/02610056
  5. H. Hijikata, A. Pizer, and T. Shemanske, Orders in Quaternion Algebras , J. Reine Angew. Math. 394 (1989), 59-106
  6. H. Hijikata, A. Pizer, and T. Shemanske, The basis problem for modular forms on ${\Gamma}_0$(N), Mem. Amer. Math. Soc. 82 (1982)
  7. T. Lam, The algebraic theory of quadratic forms, W.A. Benjamin, 1980
  8. A. Pizer, An Algorithm for computing modular forms on ${\Gamma}_0$(N), J. Algebra 6 (1980), 340-390
  9. A. Pizer, On the arithmetic of Quaternion algebras II, J. Math. Soc. Japan 28 (1976), 676-698 https://doi.org/10.2969/jmsj/02840676
  10. A. Pizer, The action of the Canonical involution on Modular forms of weigh 2 on ${\Gamma}_0$(N), Math. Ann. 226 (1977), 99-116 https://doi.org/10.1007/BF01360861
  11. I. Reiner, Maximal orders, Academic Press, 1975
  12. A. Weil, Basic number theory, Berlin, Hedelberg, New York: Springer, 1967

Cited by

  1. ZETA FUNCTIONS ON A CETAIN ORDERS IN A QUATERNION ALGEBRA vol.19, pp.3, 2012, https://doi.org/10.7468/jksmeb.2012.19.3.297