DOI QR코드

DOI QR Code

DIFFERENTIABILITY OF QUASI-HOMOGENEOUS CONVEX AFFINE DOMAINS

  • JO KYEONGHEE (School of Mathematics Sciences Seoul National University)
  • Published : 2005.05.01

Abstract

In this article we show that every quasi-homogeneous convex affine domain whose boundary is everywhere differentiable except possibly at a finite number of points is either homogeneous or covers a compact affine manifold. Actually we show that such a domain must be a non-elliptic strictly convex cone if it is not homogeneous.

References

  1. J. P. Benzecri, Sur les varietes localement affines et projectives, Bull. Soc. Math. France 88 (1960), 229-332
  2. Y. Benoist, Convex divisibles II, Duke Math. J. 120 (2003), 97-120 https://doi.org/10.1215/S0012-7094-03-12014-1
  3. W. M. Goldman, Geometric structures on manifolds and varieties of representations, Contemp. Math. 74 (1988), 169198
  4. K. Jo, Quasi-homogeneous domains and convex affine manifolds, Topology Appl. 134 (2003), no. 2, 123-146 https://doi.org/10.1016/S0166-8641(03)00106-8
  5. K. Jo, Homogeneity, quasi-homogeneity and differentiability of domains, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 9, 150-153
  6. K. Jo and I. Kim, Convex affine domains and Markus conjecture, Math. Z. 248 (2004), 173-182
  7. J. L. Koszul, Deformation des connexions localement plats, Ann. Inst. Fourier 18 (1968), 103-114 https://doi.org/10.5802/aif.279
  8. T. Nagano and K. Yagi, The affine structures on the real two-torus, Osaka J. Math. 11 (1974), 181-210
  9. W. P. Thurston, The geometry and topology of 3-manifolds, Preprint, 1977
  10. J. Vey, Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa 24 (1970), no. 3, 641-665
  11. E. B. Vingberg and V. G. Kats, Quasi-homogeneous cones, Math. Notes 1 (1967), 231-235. (translated from Math. Zametki 1 (1967), 347-354) https://doi.org/10.1007/BF01098890