DOI QR코드

DOI QR Code

IDENTIFICATION OF POSSIBLE MERCURY SOURCES AND ESTIMATION OF MERCURY WET DEPOSITION FLUX IN LAKE ONTARIO FROM LAKE ONTARIO ATMOSPHERIC DEPOSITION STUDY (LOADS)

  • Han, Young-Ji (Department of Environmental Science, College of Natural Science, Kangwon National University)
  • Published : 2005.12.31

Abstract

Total gas phase mercury (TGM) concentrations and event wet-only precipitation for Hg were collected for nine months (from April, 2002 to Dec., 2002) at Sterling, NY on the shoreline of Lake Ontario. TGM concentrations measured in this study ($3.02{\pm}2.14\;ng/m^3$) were in somewhat high range compared to other background sites. Using simplified quantitative transport bias analysis (SQTBA) possible sources affecting high Hg concentration in Sterling was identified, and they are coal-fired power plants located in southern NY and Pennsylvania. Wet deposition measured at Mercury Deposition Network (MDN) sites including Pt. Petre and Egbert, ON were compared with data obtained at the Sterling to estimate the total mercury wet deposition flux to Lake Ontario. The wet deposition flux was calculated to be the highest at the Sterling site ($7.94\;{\mu}g/m^2$ from April, 2002 to Dec. 2002) and the lowest at the Egbert ($3.92\;{\mu}g/m^2$), due to the both the difference in precipitation depth and Hg concentration in the precipitation. The deposition measured at the Sterling site is similar to Lake Michigan deposition of $6-14\;{\mu}g/m^2$ (converted for ninth months) measured for Lake Michigan Mass Balance Study (LMMBS).

Keywords

Mercury;TGM;RGM;SQTBA;Source;Wet deposition;Lake Ontario

References

  1. Booty, W. G., Resler, O., and McCrimmon, C., 'Mass balance modeling of priority toxic chemicals within the great lakes toxic chemical decision support system: RateCon model results for Lake Ontario and Lake Erie,' Environ. Modelling & Software, 20, 671-688 (2005) https://doi.org/10.1016/j.envsoft.2004.03.013
  2. Cass, G. R., 'Sulfate air quality control strategy design,' Atmos. Environ., 15, 1227-1239 (1981) https://doi.org/10.1016/0004-6981(81)90315-2
  3. Draxler, R. R. and Taylor, A. D., 'Horizontal dispersion parameters for long-range transport modeling,' J. Appl. Meteorol., 21, 367-372 (1982) https://doi.org/10.1175/1520-0450(1982)021<0367:HDPFLR>2.0.CO;2
  4. Draxler, R. R. and Hess, G. D., 'Description of the HYSPLIT 4 modeling system,' NOAA Technical Memorandum, ERL ARL-224 (1997) (Revised: August 1998, September 2002)
  5. Han, Y. J., 'Mercury in New York State; Concentrations and source identification using Hybrid receptor modeling,' Ph. D. Thesis, Clarkson University (2003)
  6. Han, Y. J., Holsen, T. M., Hopke, P. K., Vi, S. M., Pagano, J., Milligan, M., Lai, S. O., Liu, W., Falanga, L., and Andolina, C., 'Atmospheric gaseous mercury concentrations in New York State: relationships with meteorological data and other pollutants,' Atmos. Environ., 38, 6431-6446 (2004) https://doi.org/10.1016/j.atmosenv.2004.07.031
  7. Keeler, G. J. 'A hybrid approach for source apportionment of atmospheric pollutants in the Northeastern united States,' Ph. D. Thesis, University of Michigan (1987)
  8. Keeler, G. J. and Landis, M. S., 'Lake Michigan Mass Balance Methods Compendium; Standard operating procedure for analysis of vapor phase mercury,' http://www.epa.gov/grtlakes/Immb/methods/Imanasvp.pdf (1994)
  9. Lamb, R. G. and Seinfeld, J. H., 'Mathematical modeling of urban air pollution-General theory,' Environ. Sci. Technol., 7, 253-261 (1973) https://doi.org/10.1021/es60075a006
  10. Lamborg, C. H., Fitzgerald, W. F., Vandal, G. M. and Rolfhux, K. R., Water, Air, Soil Pollut., 80, 189-198 (1995) https://doi.org/10.1007/BF01189667
  11. Landis, M. S. and Keeler, G. J., 'Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study,' Environ. Sci. Technol., 36, 4518-4524 (2002) https://doi.org/10.1021/es011217b
  12. Landis, M. S., Vette, A. F., and Keeler, G. J., 'Atmospheric mercury In the Lake Michigan Basin: Influence of the Chicago/ Gary urban area,' Environ. Sci. Technol., 36, 4508-4517 (2002) https://doi.org/10.1021/es011216j
  13. National Wildlife Federation, 'Cycle of harm: Mercury's pathway from rain to fish in the environment,' Great Lakes Natural Resource Center, Greatlakes@nwf.org (2003)
  14. Polissar, A. V., Hopke, P. K., and Harris, J. M., 'Source regions for atmospheric aerosol measured at Barrow, Alaska,' Environ. Sci. Technol., 35, 4214-4226 (2001a) https://doi.org/10.1021/es0107529
  15. Polissar, A. V., Hopke, P. K., and Poirot, R. L., 'Atmospheric aerosol over Vermont: chemical composition and sources,' Environ. Sci. Tehcnol., 35, 4604-4621 (2001b) https://doi.org/10.1021/es0105865
  16. Ryan, R., 'Point, area, and mobile sources of mercury prepared for U.S. EPA analysis of proposed multi-pollutant Power Generation Legislation,' U.S. EPA, Office of Air Quality Planning and Standards, Emissions, Monitoring and Analysis Division, Emissions Factors and Inventory Group, U.S. Government Printing Office, Washington, DC (2001)
  17. Vette, A. F., Landis, M. S., and Keeler, G. J., 'Deposition and emission of gaseous mercury to and from Lake Michigan during the Lake Michigan Mass Balance Study (July, 1994 - October, 1995),' Environ. Sci. Technol., 36, 4525-4532 (2002) https://doi.org/10.1021/es0112184
  18. U.S. EPA, 'Mercury study report to Congress,' Office of Air Quality Planning and Standards and Office of Research and Development, EPA-452/R-97-005, U.S. Government Printing Office, Washington, DC (1997a)
  19. U.S. EPA, 'Locating and estimating air emissions from sources of mercury and mercury compounds (Mercury L & E),' Final draft report, EPA-454/R-97-0121997, Research Triangle Park, NC (1997b)
  20. Schroeder, W. H. and Munthe, J., 'Atmospheric mercury - An overview,' Atmos. Environ., 32(5), 809-822 (1998) https://doi.org/10.1016/S1352-2310(97)00293-8
  21. Hoyer, M., Burke, J., and Keeler, G. J., Water, Air, Soil Pollut., 80, 199-208 (1995) https://doi.org/10.1007/BF01189668
  22. Samson, P. 1., 'Trajectory analysis of summertime sulfate concentrations in the Northeastern United States,' J. Appl. Meteolrol., 19, 1382-1394 (1980) https://doi.org/10.1175/1520-0450(1980)019<1382:TAOSSC>2.0.CO;2