DOI QR코드

DOI QR Code

APPLICATIONS OF FERRATE(VI) IN THE TREATMENT OF WASTEWATERS

  • Tiwari, Diwakar (Department of Environmental Engineering, Kwandong University) ;
  • Yang, Jae-Kyu (Department of Environmental Engineering, Kwandong University) ;
  • Lee, Seung-Mok (Department of Environmental Engineering, Kwandong University)
  • Published : 2005.12.31

Abstract

The novel behavior of ferrate(VI) has received an increased attention for its possible applications in various purposes particularly in the treatment of waste/effluent waters. It possess relatively high oxidizing capacity and the reduced ferrate(VI) into Fe(III) again an important and useful precipitant, coagulant, flocculants and likely to be a good adsorbent via the formation of ferric hydroxide for various metal cations. Moreover, the non-toxic effect makes it a 'green chemical' and further enhances its widespread uses in various purposes. Here an attempt has been made to review the applications of ferrate(VI) in the treatment of waste waters and also its possible future applications in the wastewater treatment technology.

Keywords

Ferrate(VI);wastewater treatment;oxidant;coagulant

References

  1. Pontius, F. W., Water Quality and Treatment, 4th Ed., Mc Graw Hill, Inc. (1990)
  2. Neyens, E., Baeyens, J., Weemaes, M. and Heyder, B. De, 'Advanced biosolids treatment using $H_2O_2$-oxidation,' Environ. Eng. Sci., 19(1), 27-35 (2002) https://doi.org/10.1089/109287502753590214
  3. Son, H. K. and Striebig, B. A., 'Quantification and treatment of sludge odor,' Environ. Eng. Res., 8(5), 252-258 (2003) https://doi.org/10.4491/eer.2003.8.5.252
  4. Kim, C. G., Lee, H. S., and Yoon, T. I., 'Enhanced nitrification by immobilized clinoptilolite in an activated sludge,' Environ. Eng. Res., 8(2), 49-58 (2003) https://doi.org/10.4491/eer.2003.8.2.049
  5. Kim, H., Hao, O. J., Seagren, E. A., and Davis, A. P., The Proceedings of Workshop of Biosolids Management in the 21st Centuries sponsored by National Science Foundation, University of Maryland and College Park Holidays Inn, College Park, MD, USA (2000)
  6. Kim, H., Murthy, S., Peot, C., Ramierz, M., Strawn, M., Park, C. H., and McConell, L. L., 'Examination of mechanisms for odor compounds generation during lime stabilization,' Wat. Environ. Res., 75, 121-128 (2003) https://doi.org/10.2175/106143003X140908
  7. Jones, O. A. H., Voulvoulis, J. N., and Lester, J. N., 'Aquatic environmental assessment of the top 25 English prescription pharmaceuticals,' Wat. Res., 36(20), 5013-5022 (2002) https://doi.org/10.1016/S0043-1354(02)00227-0
  8. Latch, D. E., Stender, B. L., Packer, J. L., Arnold, W. A., and Mcneil, K., 'Photochemical fate of pharmaceuticals in the environment : Cimetidine and Ranitidine,' Environ. Sci. Technol., 37(15), 3342-3350 (2003) https://doi.org/10.1021/es0340782
  9. Ternes, T. A., Meisenheimer, M., Mcdowell, D., Sacher, F., Brauch, H. J., Haist-Guide, B., Preuss, G., Wilme, U., and Zulei-Seibert N., 'Removal of pharmaceutical during drinking water treatment,' Environ. Sci. Technol., 36(17), 3855-3863 (2002) https://doi.org/10.1021/es015757k
  10. Huber, M. C., Canonica, S., Park, G. Y., and Gunten, U. V., 'Oxidation of pharmaceuticals during ozonation and advanced oxidation process,' Environ. Sci. Technol., 37(5), 1016-1024 (2003) https://doi.org/10.1021/es025896h
  11. Doll, T. E. and Frimmel, F. H., 'Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different $TiO_2$ materials-determination of intermediates and reaction pathways,' Wat. Res., 38(4), 955-964 (2004) https://doi.org/10.1016/j.watres.2003.11.009
  12. Horvath, O. and Huszank, R., 'Degradation of surfactants by hydroxyl radicals photogenerated from hydroxoiron(III) complexes,' Photochem. Photobiol. Sci., 2, 960-966 (2003) https://doi.org/10.1039/b303697a
  13. Garcia, M. T., Campos, E., Sanchez-Leal, J., and Ribosa, I., 'Anaerobic degradation and toxicity of commercial cationic surfactants in anaerobic screening tests,' Chemosphere, 41(5), 705-710 (2000) https://doi.org/10.1016/S0045-6535(99)00455-5
  14. Schroder, F. R., Schmitt, M., and Reichensperger, U., 'The effect of waste water treatment technology on the elimination of anionic surfactants,' Waste Management, 19(2), 125-131 (1999) https://doi.org/10.1016/S0956-053X(99)00012-4
  15. Hidaka, H., Yamada, S., Suenaga, S., Zhao J., Serporne, N., and Pelizzetti, E., 'Photodegradation of surfactants Part VI. Complete photocatalytic degradation of anionic, cationic and nonionic surfactants in aqueous semiconductor dispersions,' J. Molecular Catalysis, 59(3), 279-290 (1990) https://doi.org/10.1016/0304-5102(90)85101-M
  16. Nickson, R., McArthur, J., Burgess, W., and Ahmed, K. M., 'Arsenic poisoning in Bangladesh groundwater,' Nature, 395-398 (1998)
  17. Jekel, M. R., 'Removal of Arsenic in Drinking Water Treatment in Arsenic in the Environment,' Ed. Nriagu, J. O., New York, Wiley-Interscience, pp. 119-132 (1994)
  18. Jiang, J. Q. and Lloyd, B., 'Progress in the development and use of ferrate(VI) salts as an oxidant and coagulant for water and wastewater treatment,' Wat. Res., 36(6), 1397-1408 (2002) https://doi.org/10.1016/S0043-1354(01)00358-X
  19. Lee, Y., Cho, M., Kim, J. Y., and Yoon J., 'Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical,' J. Ind. Eng. Chem., 10(1), 161-171 (2004) https://doi.org/10.1021/ie50098a038
  20. Thompson, G. W., Ockerman, L. T., and Schreyer, J. M., 'Preparation and purification of potassium ferrate VI,' J. Am. Chem. Soc., 73(4), 1379-1381 (1951)
  21. Audette, R. J. and Quail, J. W., 'Potassium, rubidium, cesium and barium ferate(VI). Preparation, infrared spectra and magnetic susceptibilities,' Inorg. Chem., 11(8), 1904-1908 (1972) https://doi.org/10.1021/ic50114a034
  22. Stahl, G. E., Referred according to Gmelins Handburch, No. 59, Eisen, p. 912 (1932)
  23. Poggendorf, J. C., Pogg. Ann., 54, 372 (1941)
  24. Mellor, J. W., A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green & Co., London, p. 929 (1924)
  25. Perfiliev, Y. D., 'Mossbauer spectroscopy of iron in high oxidation states,' Russ. J. Inorg. Chem., 47, 611-618 (2002)
  26. Bouzek, K., Schmidt, M. J., and Wragg, A. A., 'Influence of electrolyte hydrodynamics on current yield in ferrate(VI) production by anodic iron dissolution,' Coll. Czech. Chem. Comm., 65(1), 133 (2000)
  27. Tousek, J., Ph.D. Thesis, ICT Prague (1959)
  28. Tousek, J., Coll. Czech. Chem. Comm., 27, 914 (1962)
  29. Tousek, J., Coll. Czech. Chem. Comm., 'Untersuchung der zersetzung von natriumferrate losungen,' 27, 908-913 (1962) https://doi.org/10.1135/cccc19620908
  30. Hives, J, Benova, M., and Bouzek, K., 'Molten hydroxide electrochemistry of ferrate (VI) production,' Proce. Of the International Symp. On Innovative Ferrate(VI) Technology in Water and Wastewater Treatment Pub. ICT Press, Prague, pp. 38-44 (2004)
  31. Pick, W., Z. Electrochem., 7, 713 (1900/1901) https://doi.org/10.1002/bbpc.19010076505
  32. Denvir, A. and Pletcher, D., 'Eelectrochemical generation of ferrate Part I: Dissolution of an iron wool bed anode,' J. Appl. Electrochem., 26(7), 815-822 (1996) https://doi.org/10.1007/BF00683743
  33. Denvir, A. and Pletcher, D., 'Eelectrochemical generation of ferrate Part II Influence of anode composition,' J. Appl. Electrochem., 26(7), 823-827 (1996) https://doi.org/10.1007/BF00683744
  34. Bouzek, K. and Rousar I., 'Current efficiency during anodic dissolution of iron to ferrate(VI) in concentrated alkali hydroxide solutions,' J. Appl. Electrochem., 23(12), 1317-1322 (1993) https://doi.org/10.1007/BF00234818
  35. Bouzek, K. and Rousar I., 'Influence of anode material on current yields during ferrate(VI) production by anodic iron dissolution. Part I : current efficiency during anodic dissolution of grey cast iron to ferrate(VI) in concentrated alkali hydroxide solutions,' J. Appl. Electrochem., 26(9), 914-924 (1996)
  36. Bouzek, K., Rousar, I., and Taylor M. A., 'Influence of anode material on current yields during ferrate(VI) production by anodic iron dissolution. Part II : Current efficiency during anodic dissolution of white cast iron to ferate(VI) in concentrated alkali hydroxide solutions,' J. Appl. Electrochem., 26(9), 925-932 (1996) https://doi.org/10.1007/BF00242044
  37. Bouzek, K. and Rousar I., 'Influence of anode material on current yields during ferrate(VI) production by anodic iron dissolution. Part III : Current efficiency during anodic dissolution of pure iron to ferate(VI) in concentrated alkali hydroxide solutions,' J. Appl. Electrochem., 27, 679 (1997)
  38. Bouzek, K., Lipovska, M., Schmidt, M. J., Rousar, I., and Wragg A. A., 'Electrochemical production of ferrate(VI) using sinusoidal alternating current superimposed on direct current : Grey and white cast iron electrodes,' Electrochim. Acta, 44(4), 547-557 (1999) https://doi.org/10.1016/S0013-4686(98)00174-1
  39. Bouzek, K. and Macova Z., 'Anode material aspects of the electrochemical ferrate(VI) synthesis,' Proce. Of the International Symp. On Innovative Ferrate(VI) Technology in Water and Wastewater Treatment Pub. ICT .Press, Prague pp. 9-19 (2004)
  40. Licht, S., Wang, B., and Ghosh, S., 'Energetic iron(VI) chemistry : The super iron battery. Science, 285(5430), 1039-1042 (1999) https://doi.org/10.1126/science.285.5430.1039
  41. White, D. A. and Franklin, G. S., 'A preliminary investigation into the use of sodium ferrate in water treatment,' Environ. Technol., 19, 1157-1160 (1998) https://doi.org/10.1080/09593331908616776
  42. Bailie, A. G., Bouzek, K., Lukasek, P., Rousar, L., and Anthony, A., 'Solubility of potassium ferrate in 12M alkaline solutions between $20^{\circ}C$ and $60^{\circ}C$', J. Chem. Technol. Biotechnol., 66(1), 35-40 (1996) https://doi.org/10.1002/(SICI)1097-4660(199605)66:1<35::AID-JCTB457>3.0.CO;2-M
  43. Audette, R. J., Quail, J. W., Black, W. H., and Robertson, B. E., 'Crystal Structure of $M_2FeO_4$ (M = K, Rb, Cs),' J. Solid State Chem., 8(1), 43-49 (1973) https://doi.org/10.1016/0022-4596(73)90019-4
  44. Herber, R. H. and Johnson, D., 'Lattice dynamics and hyperfine interactions in $M_2FeO_4$ (M=$K^+,\;Rb^+,\;Cs^+$) and $M'FeO_4$ (M'= $Sr^{2+},\;Ba^{2+}$)', Inorg. Chem., 18(10), 2786-2789 (1979) https://doi.org/10.1021/ic50200a030
  45. Scholder, R., Bunsen, H. V., and Zeiss, W., 'Orthoferrates(lV),' Z. anorg. U. allgem. Chem., 283, 330 (1956)
  46. Scholder, R., 'Recent investigations on oxometallats and double oxides,' Ages. Chem., 1, 220 (1962)
  47. Ichida, T., 'Mossbauer study of thermal decomposition products of $K_2FeO_4$,' Bull. Chem. Soc. Jpn., 46, 79-82 (1973) https://doi.org/10.1246/bcsj.46.79
  48. Martinez-Tamayo, E., Beltran-Orter, A., and Beltran-Porter, D., 'Iron compounds in high oxidation state:II. Reaction between $Na_2O_2$ and $FeSO_4$,' Thermochim. Acta, 97, 243-255 (1986) https://doi.org/10.1016/0040-6031(86)87024-1
  49. Cici, M. and Cuci, Y., 'Production of some coagulant materials from galvanizing workshop waste,' Waste Management, 17(7), 407-410 (1997) https://doi.org/10.1016/S0956-053X(97)10001-0
  50. Evrard, O., Gerardin, R., Schmitt, N., and, Evrard, J. L., 'Ferrates of alkaline or alkaline earth metals, their preparation and their industrial applications,' Patent No. WO 91/07352 (1991)
  51. Kanari, N., Ostrosi, E., Ninane, L., Neveux, N., and Evrard O., 'Synthesis of potassium ferrate using chlorine as oxidant,' Proce. Of the International Symp. On Innovative Ferrate (VI) Technology in Water and Wastewater Treatment Pub. ICT Press, Prague, pp. 20-31 (2004)
  52. Ito, A. and Ono, K., 'Mossbauer study of $Fe^{6+}$ in potassium ferrate, $K_2FeO_4$,' J. Phys. Soc. Jpn., 26, 1548 (1969)
  53. Vertes A., Homonnay Z., Mossbauer Spectroscopyof Sophisticated Oxides, Eds. Akademiai Kiado, Budapest (1997)
  54. Dedushenko, S. K., Perfiliev, Y. D., Goldfield, M. G., and Tsapin A. I., 'Mossbaur study of hexavalent iron compounds,' Hyperfine Interactions, 136(3), 373-377 (2001) https://doi.org/10.1023/A:1020541910373
  55. Perfiliev, Y. and Sharma, V. K., 'Ferrates (VI) synthesis : Dry and wet methods,' Proce. of the International Symp. On Innovative Ferrate(VI) Technology in Water and Wastewater Treatment Pub. ICT Press, Prague, pp. 32-37 (2004)
  56. Hopp, M. L., Schlemper, E. O., and Murmann, R. K., 'Structure of dipotassium ferrate(VI),' Acta Cryst., B38, 2237-2239 (1982)
  57. Inorganic Crytal Structure Database, Version 1.3.1. December 2003, National Institute of Standards and Technology (NIST) and Fachinformationszentrum Karlsruhe (FIZ)
  58. Licht, S., Naschitz, V., Helperin, L., Lin, L., Chen, J., Ghosh, S., and Liu B., 'Analysis of ferrate(VI) compounds and super-iron battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization,' J. Power Sources, 101(2), 167-176 (2001) https://doi.org/10.1016/S0378-7753(01)00786-8
  59. Li, C., Li, X. Z., and Graham, N., 'A study of the prepartion and reactivity of potassium ferrate,' Chemosphere, 61(4), 537-543 (2005) https://doi.org/10.1016/j.chemosphere.2005.02.027
  60. Wood, R. H., 'The heat, free energy and entropy of ferrate(VI) ion,' J. Am. Chem. Soc., 80(9), 2038-2041 (1958) https://doi.org/10.1021/ja01542a002
  61. Delaude, L. and Laszo, P, 'A novel oxidizing reagent based on potassium ferrate(VI),' J. Org. Chem., 61, 6360-6370 (1996) https://doi.org/10.1021/jo960633p
  62. DeLuca, S. J., Chao, A. C., and Smallwood, C. H., 'Ames test of ferrate-treated water,' J. Environ. Eng., 109(5), 1159-1167 (1983) https://doi.org/10.1061/(ASCE)0733-9372(1983)109:5(1159)
  63. Pertia, O., 'Oxidative destruction of organic water residuals by iron(VI) ferrate,' Ph.D. Thesis, Institute of Chemical Technology, Prague, Czech Republic (1985)
  64. Licht, S., Naschitz, V., Liu, B., Ghosh, S., Helperin, N., Helperin, L., and Rozen, D., 'Chemical synthesis of battery grade super-iron barium and potassium Fe(VI) ferrate compounds,' J. Power Sources, 99(1-2), 7-14 (2001) https://doi.org/10.1016/S0378-7753(00)00658-3
  65. Licht, S., Naschitz, V., and Wang, B., 'Rapid chemical. synthesis of the barium ferrate super-iron Fe(VI) compound, $BaFeO_4$,' J. Power Sources, 109(1), 67-70 (2002) https://doi.org/10.1016/S0378-7753(02)00041-1
  66. Licht, S., Tel-Vered, R., and Halperin, L., 'Towered efficient electrochemical synthesis of Fe(VI) ferrate and super-iron battery compounds,' J. Electrochem. Soc., 151, A31-A39 (2004)
  67. Gilbert, M. B., 'A study of the potential of potassium ferrate(VI) as a disinfactant and general oxidant for use in water and wastewater treatment,' Masters Thesis, University of Miami (1975)
  68. Waite, T. D., 'Inactivation of Salmonella Sp., Shigella Sp., Streptococcus sp. and f2 virus by iron(VI) ferrate,' Paper Presented at 1978 Annual AWWA Conference. Atlantic City, NJ (1978)
  69. Schink, T. and Waite, T. D., 'Inactivation of f2 virus with ferrate(VI),' Wat. Res., 14(2), 1705-1717 (1980) https://doi.org/10.1016/0043-1354(80)90106-2
  70. Waite, T. D., 'Feasibility of wastewater treatment with ferrate(VI),' J. Environ. Eng., 105, 1023-1034 (1979)
  71. Kazma, F., 'Viral inactivation by potassium ferrate,' Wat. Sci. Technol., 31(5-6), 165-168 (1995)
  72. Jiang, J. Q. and Panagoulopoulos, A., 'The use of potassium ferrate for wastewater treatment,' Proce. Of the International Symp. On Innovative Ferrate(VI) Technology in Water and Wastewater Treatment Pub. ICT Press, Prague pp. 67-73 (2004)
  73. Waite, T. D. and Gilbert M., 'Oxidative destruction of phenol and other organic water residuals by iron(VI) ferrate,' J. Wat. Pollut. Contro Fed., 50, 543-551 (1978)
  74. Bielski, B. H. J., Sharma, V. K., and Czapski G., 'Reactivity of ferrate(VI) with carboxylic acids : A pre-mix pulse radiolysis study,' Radiat. Phys. Chem., 44(5), 479-484 (1994) https://doi.org/10.1016/0969-806X(94)90044-2
  75. Sharma, V. K., 'Potassium ferrate(VI) : An environmentally friendly oxidant,' Adv. Environ. Res., 6, 143-156 (2002) https://doi.org/10.1016/S1093-0191(01)00119-8
  76. DeLuca, S. J., Chao, A. C., Asce, M., and Smallwood, C., 'Removal of organic priority pollutants by oxidation, coagulation,' J. Environ. Eng., 109(1), 36-46 (1983) https://doi.org/10.1061/(ASCE)0733-9372(1983)109:1(36)
  77. De Luca, S. J., Idle, C. N., and Chao, A. C., 'Quality improvement of biosolids by ferrate(VI) oxidation of offensive odor compounds,' Wat. Sci. Technol., 33(3) 119-130 (1996)
  78. Sharma, V. K., Rivera, W., Smith, J. O., and Obrien, B., 'Ferrate(VI) oxidation of aqueous cyanide,' Environ. Sci. Technol., 32(17), 2608-2613 (1998) https://doi.org/10.1021/es970820k
  79. Sharma, V. K., Rendon, R. A., and Millero, F. J., 'Oxidation of sulphur-containing compounds by ferrate(VI) in the aquatic environment,' Abstr. Pap. Am. Chem. Soc., 217, 110 (1999)
  80. Sharma', V. K., Burnett, C. R., O'Connor, D. B., and Cabelli, D., 'Iron(VI) and iron(V) oxidation of thiocyanate,' Environ. Sci. Technol., 36( 19), 4182-4186 (2002) https://doi.org/10.1021/es020570u
  81. Read, J. F., Graves, C. R., and Jackson, E., 'The kinetics and mechanism of the oxidation of thiols 3-mercapto-a-propane sulfonic acid and 2-mercaptonicotinic acid by potassium ferrate,' Inorg. Chim. Acta, 348(1), 41-49 (2003) https://doi.org/10.1016/S0020-1693(03)00003-3
  82. Bartzatt, R. and Nagel, D., 'Removal of nitrsoamines from wastewater by potassium ferrate oxidation,' Arch. Eviron. Health, 46, 313 (1991)
  83. Sharma, V. K. and Mishra, S. K., 'Ferrate (VI) oxidation of sulfamethoxazole : A kinetic study,' Proc. of the International Symp. On Innovative Ferrate(VI) Technology in Water and Wastewater Treatment Pub. ICT Press, Prague, pp. 102-108 (2004)
  84. Read, J. F., Bewick, S. A., Graves, C. R., MacPherson, J. M., Salah, J. C., Theriault, A., and Wyand, A. E. H., 'The kinetics and mechanism of the oxidation of s-methyl-L- cysteine, L-cystine and L-cysteine by potassium ferrate,' Inorg. Chim. Acta, 303 (2), 244-255 (2000) https://doi.org/10.1016/S0020-1693(00)00043-8
  85. Read, J. F., Adams, E. K., Gass, H. J., Shea, S. E., and Theriault, A., 'The kinetics and mechanism of oxidation of 3-mercaptopropionic acid, 2-mercaptoethane-sulpfonic acid and 2-mercaptobenzoic acid by potassium ferrate,' Inorg. Chim. Acta, 281(1), 43-52 (1998) https://doi.org/10.1016/S0020-1693(98)00130-3
  86. Sharma, V. K., Rivera, W., Joshi, V. N., and Millero, F. J., 'Ferrate(VI) oxidation of thiourea,' Environ. Sci. Technol., 33(15), 2645-2650 (1999) https://doi.org/10.1021/es981083a
  87. Read, J. F., Boucher, K. D., Mehlman, S. A., and Watson, K. J., 'The kinetics and mechanism of the oxidation of 1,4-thioxane by potassium ferrate,' Inorg. Chim. Acta, 267(1), 159-163 (1998) https://doi.org/10.1016/S0020-1693(97)05572-2
  88. Hornstein, Ph.D. Thesis, New Mexico State University, USA (1999)
  89. Carr, J. D., Kelter, P. B., Tabatabai, A., Sspichal, D., Erickson, J., and McLaughin, C. W., Proc. Conf. Water Chlorin. Chem. Environ. Impact Health Effects, R. L. Jolley Eds. New York, pp. 1285-1298 (1985)
  90. Rush, J. D., Zhao, Z., and Bielski, B. H. J., 'Reaction of ferrate(VI)/ferrate(V) with hydrogen peroxide and superoxide anion- a stopped-flow and premix pulse radiolysis study,' Free Rad. Res., 24, 187-198 (1996) https://doi.org/10.3109/10715769609088016
  91. Johnson, M. D. and Hornstein, B. J., 'Kinetics and mechanism of the ferrate oxidation of hydrazine and monomethyl hydrazine,' Inorg. Chim. Acta, 225(1-2), 145-150 (1994) https://doi.org/10.1016/0020-1693(94)04041-9
  92. Sharma, V. K., Bloom, J. T. and Joshi, V. N., 'Oxidation of ammonia by ferrate(VI),' J. Environ. Sci. Health, A33, 635 (1998)
  93. Lee, Y., Yoon, J., and Gunten, U. von, 'Kinetics of the oxidation of phenolic endocrine disruptures during water treatment with ferrate (Fe(VI)),' Environ. Sci. Technol., 39(22), 8978-8984 (2005) https://doi.org/10.1021/es051198w
  94. Yong, Y. E., Sharma, V. K., and Ray, A. K., 'Oxidation of cationic surfactant by ferrate(VI),' Proc. of the International Symp. On Innovative Ferrate(VI) Technology in Water and Wastewater Treatment Pub. ICT Press, Prague, pp. 117-123 (2004)
  95. Lee, Y. H., Um, I. H., and Yoon, J., 'Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation,' Environ. Sci. Technol., 37(24), 5750-5756 (2003) https://doi.org/10.1021/es034203+
  96. Kim, S. H., 'Enhanced coagulation: Determination of controlling criteria and effect on turbidity removal,' Environ. Eng. Res., 10(3), 105-111 (2003)
  97. Jiang, J. Q. and Wang, S., 'Enhanced coagulation with potassium ferate(VI) for removing humic substances,' Eviron. Eng. Sci., 20, 727-734 (2003)
  98. Ma, J. and Liu, W., 'Effectiveness of ferrate(VI) peroxidation in enhancing the coagulation of surface waters,' Wat. Res., 36(20), 4959-4962 (2002) https://doi.org/10.1016/S0043-1354(02)00224-5
  99. Sharma, V. K., Kazma, F., Jiangyong, H., and Ray, A. K., 'Ferrates (iron(VI) and iron(V)) - Environmentally-friendly oxidants and disinfectants,' J. Water Health, 3(1), 45-58 (2005)
  100. Jones, O. A. H., Voulvoulis, J. N., and Lester, J. N., 'Human pharmaceuticals in the aquatic environment. A review,' Environ. Technol., 22, 1383-1394 (2001) https://doi.org/10.1080/09593332208618186
  101. Sanz, J., Lombrana, J. I., and Luis, A. D., 'Ultraviolet-$H_2O_2$ oxidation of surfactants,' Environ. Chem. Lett., 1, 32-37 (2003) https://doi.org/10.1007/s10311-002-0006-3
  102. Bouzek, K., Flower, L., and Wragg A. A., 'Electrochemical production of ferrate(VI) using sinusoidal alternating current superimposed on direct current : Pure iron electrode,' J. Appl. Electrochem., 29(5), 569-576 (1999) https://doi.org/10.1023/A:1026491704787
  103. Goff, H. and Murmann, R. K., 'Mechanism of isotopic oxygen exchange and reduction of ferrate(VI) ion ($FeO_4^{2-}$), J. Am. Chem. Soc., 93(23), 6058-6065 (1971) https://doi.org/10.1021/ja00752a016
  104. Sharma, V. K., Smith, J. O., and Millero, F. J., 'Ferrate(VI) oxidation of hydrogen sulphide,' Environ. Sci. Technol., 31(9), 2486-2491 (1997) https://doi.org/10.1021/es960755z
  105. Johnson, M. D. and Read, J. F., 'Kinetics and mechanism of the ferrate oxidation of thiosulfate and other sulfur containing species,' Inorg. Chem., 35(23), 6795-6799 (1996) https://doi.org/10.1021/ic960480o
  106. Zeiner, C. and Frimmel, F. H., 'Oxidation treatment of pharmaceuticals in water,' Wat. Res., 34(1), 1881-1885 (2000) https://doi.org/10.1016/S0043-1354(99)00338-3
  107. Murmann, R. K. and Robinson, P. R., 'Experiments utilizing FeO42- for purifying water,' Wat. Res., 8(8), 543-547 (1974) https://doi.org/10.1016/0043-1354(74)90062-1
  108. Lee, Y., Yoon, J., and Gunten, U. von, 'Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS,' Wat. Res., 39(10), 1946-1953 (2005) https://doi.org/10.1016/j.watres.2005.03.005
  109. Johnson, M. D. and Hornstein, B. J., 'The kinetics and mechanism of the ferrate(VI) oxidation of hydroxylamines,' Inorg. Chem., 42(21), 6923-6928 (2003) https://doi.org/10.1021/ic020705x

Cited by

  1. Ferrate(VI): A green chemical for the oxidation of cyanide in aqueous/waste solutions vol.42, pp.6, 2007, https://doi.org/10.1080/10934520701304674
  2. From chemical disinfection to electrodisinfection: The obligatory itinerary? vol.16, pp.1-3, 2010, https://doi.org/10.5004/dwt.2010.1085
  3. Simultaneous Desulfurization and Denitrification from Flue Gas by Ferrate(VI) vol.45, pp.9, 2011, https://doi.org/10.1021/es103857g
  4. An eco-sustainable green approach for heavy metals management: two case studies of developing industrial region vol.184, pp.1, 2012, https://doi.org/10.1007/s10661-011-1978-x
  5. Treatment of wastewater contaminated with Cd(II)–NTA using Fe(VI) vol.50, pp.1-3, 2012, https://doi.org/10.1080/19443994.2012.708534
  6. Advances in the development and application of ferrate(VI) for water and wastewater treatment vol.89, pp.2, 2013, https://doi.org/10.1002/jctb.4214
  7. Synthesis of reactive iron impregnated nanoporous activated carbon and its application in anaerobic biological treatment to enhance biodegradability of ortho-phenylenediamine vol.90, pp.6, 2014, https://doi.org/10.1002/jctb.4403
  8. Efficient use of ferrate(VI) for the remediation of wastewater contaminated with metal complexes vol.20, pp.1, 2015, https://doi.org/10.4491/eer.2014.079
  9. Degradation of some micro-pollutants from aqueous solutions using ferrate (VI): Physico-chemical studies pp.1520-5754, 2017, https://doi.org/10.1080/01496395.2017.1374976
  10. Efficient use of ferrate(VI) in the oxidative removal of potassium hydrogen phthalate from aqueous solutions vol.23, pp.2, 2017, https://doi.org/10.4491/eer.2017.087
  11. An Eco-Friendly Method to Get a Bio-Based Dicarboxylic Acid Monomer 2,5-Furandicarboxylic Acid and Its Application in the Synthesis of Poly(hexylene 2,5-furandicarboxylate) (PHF) vol.11, pp.2, 2019, https://doi.org/10.3390/polym11020197