DOI QR코드

DOI QR Code

Assessment of Genetic Diversity and Relationships Between Korean Cattle and Other Cattle Breeds by Microsatellite loci

Microsatellite loci 분석에 의한 한우와 타 품종간의 유전적 유연관계

  • Yoon, D.H. (National Livestock Research Institute, R.D.A.) ;
  • Park, E.W. (National Livestock Research Institute, R.D.A.) ;
  • Lee, S.H. (National Livestock Research Institute, R.D.A.) ;
  • Lee, H.K. (Department of Genomic Engineering, Hankyoung National University) ;
  • Oh, S.J. (National Livestock Research Institute, R.D.A.) ;
  • Cheong, I.C. (National Livestock Research Institute, R.D.A.) ;
  • Hong, K.C. (College of Life & Environmental Science, Korea University)
  • 윤두학 (농촌진흥청 축산연구소) ;
  • 박응우 (농촌진흥청 축산연구소) ;
  • 이승환 (농촌진흥청 축산연구소) ;
  • 이학교 (한경대학교 생명공학과) ;
  • 오성종 (농촌진흥청 축산연구소) ;
  • 정일정 (농촌진흥청 축산연구소) ;
  • 홍기창 (고려대학교 생명유전공학부)
  • Published : 2005.06.30

Abstract

For the genetic assessment of the cattle breeds including Hanwoo, eleven microsatellite markers on ten bovine autosomes were genetically characterized for 618 individuals of nineteen cattle breeds; North Eastern Asian breeds (Korean cattle, Korean Black cattle, Japanese Black cattle, Japanese Brown cattle, Yanbian cattle), Chinese yellow cattle (Luxi cattle, Nanyang cattle), European Bas taurus (Angus, Hereford, Charolais, Holstein, Limousin), African Bas taurus (N'Dama, Baoule), African Bas indicus (Kavirondo Zebu, White Fulani), Asian Bas indicus (Sahiwal, Nelore) and one Bali cattle, Bas banteng as an outbreed-reference population. Allele frequencies derived from the genotyping data were used in estimating heterozygosities, gene diversities and genetic distances. The microsatellite loci were highly polymorphic, with a total of 162 different alleles observed across all loci. Variability in allele numbers and frequencies was observed among the breeds. The average expected heterozygosity of North Eastern Asian breeds was higher than those of European and African taurines, but lower than those of Asian and African indicines. Genetic distances were estimated using Nei's DA genetic distance and the resultant DA matrix was used in the construction of the phylogenetic trees. The genetic distances between North Eastern Asian cattle breeds and Bas indicus were similar with those between European Bas taurus and Bas indicus, and African Bas taurus and Bas indicus, respectively. The clusters were clearly classified into North Eastern Asian, European and African taurines groups as well as different cluster with Chinese mainland breeds, firstly out-grouping with Bas indicus. These results suggest that Korean cattle, Hanwoo, had not been originated from a crossbred between Bas primigenius in Europe and Bas indicus in India and North Eastern Asian Bas taurus may be have separate domestication from European and African Bas taurus.

Keywords

Microsatellite;Bos indicus;Bos taurus;Hanwoo;Phylogenetic analysis

References

  1. Abe, T., Komatsu, M., Oishi, T. and Kageyama, A. 1975. Genetic Polymorphism of Milk Proteins in Japanese Cattle and European Cattle Breeds in Japan. Jpn. J. Zootech. Sci. 46:591-599
  2. Abe, T., Oishi, T., Suzuki, S., Arnano, T., Kondo, K., Nozawa, K., Namikawa, T., Kumazaki, K., Koga, O., Hayashida, S. and Otsuka, J. 1968. Studies on the native farm animals in Asia. I. On blood groups and serum protein polymorphism of East Asian cattle. Jpn. J. Zootech. Sci. 39:523-535
  3. Arranz, J. J., Bayon, Y. and San Primitivo, F. 1996. Comparison of protein markers and micro-satellites in differentiation of cattle populations. Anim. Genet. 27: 415-419 https://doi.org/10.1111/j.1365-2052.1996.tb00508.x
  4. Baker, C. M. A. and Manwell, C. 1980. Chemical classification of cattle. 1. Breed groups. Anim. Blood Grps Biochem. Genet. 11:127-150
  5. Barker, J. S. F., Tan, S. G., Selvaraj, O. S. and Mukherjee, T. K. 1997. Genetic variation within and relationships among populations of Asian water buffalo (Bubalus bubalis). Anim. Genet. 28:1-13 https://doi.org/10.1111/j.1365-2052.1997.00036.x
  6. Bjornstad, G., Nilsen, N. O. and Roed, K. H. 2003. Genetic relationship between Mongolian and Norwegian horses ? Anim. Genet. 34:55-58 https://doi.org/10.1046/j.1365-2052.2003.00922.x
  7. Blott, S. C., Williams, J. L. and Haley, C. S. 1999. Discriminating among cattle breeds using genetic markers. Heredity 82:613-619 https://doi.org/10.1046/j.1365-2540.1999.00521.x
  8. Bradley, D. G., MacHugh, D. E., Cunningham, P. and Loftus R. T. 1996. Mitochondrial diversity and the origins of African and European cattle. Proc. Natl. Acad. Sci. USA. 93:5131-5135 https://doi.org/10.1073/pnas.93.10.5131
  9. Chen, Y., Wang, Y., Cao, H. and Zhang, Y. 1990. Characteristics of Chinese Yellow Cattle Ecospecies and Their Course of Utilisation. Agricultural Publishing House. Beijing, China
  10. Edwards, C. J., Dolf, G., Looft, C., Loftus, R. T. and Bradley, D. G. 2000a. Relationships between the endangered Pustertaler-Sprinzen and three related European cattle breeds as analysed with 20 microsatellite loci. Anim. Genet. 31:329-332 https://doi.org/10.1046/j.1365-2052.2000.00651.x
  11. Edwards, C. J., Gaillard, C., Bradley, D. G. and MacHugh, D. E. 2000b. Y-specific microsatellite polymorphisms in a range of bovid species. Anim. Genet. 31:127-130 https://doi.org/10.1046/j.1365-2052.2000.00602.x
  12. Felius, M. 1995. Cattle Breeds - An Encyclopedia. Misset. Doetinchem. The Netherlands
  13. Hanotte, O., Bradley, D. G., Ochieng, J. W., Verjee, Y., Hill, E. W. and Rege, J. E. O. 2002. African Pastoralism: Genetic Imprints of Origins and Migrations. Science 296: 336-339 https://doi.org/10.1126/science.1069878
  14. Hanotte, O., Tawah, C. L., Bradley, D. G., Okomo, M., Verjee, Y., Ochieng, J. and Rege, J. E. O. 2000. Geographic distribution and frequency of a taurine Bos taurus and an indicine Bos indicus Y specific allele amongst sub-Saharan African cattle breeds. Molecular Ecology 9:387-396 https://doi.org/10.1046/j.1365-294x.2000.00858.x
  15. Honda, T., Nomura T., Fukushima, M. and Mukai, F. 2002. Gene dropping analysis of founder contributions in a closed Japanese black cattle population. Animal Science Journal 73: 105-111 https://doi.org/10.1046/j.1344-3941.2002.00016.x
  16. IHGSC (international Human Genome Sequencing Consortium). 2001. Initial sequencing and analysis of the human genome. Nature 409:860-921 https://doi.org/10.1038/35057062
  17. Ito, S., Kanemaki, M., Morita, M., Yamada, M., Tanabe, Y., Nagamura, T., Namikawa, T. and Tomita, T. 1988. Blood protein and Blood Group Gene Constitutions of Japanese Brown Cattle in Kumamoto and their Genetic Relationships with Korean and Simmental Cattle. Jpn. J. Zootech. Sci. 59:433-445
  18. Kim, K. S., Yeo, J. S. and Choi, C. B. 2002. Genetic diversity of north-east Asian cattle based on microsatellite data. Anim. Genet. 33: 201-204 https://doi.org/10.1046/j.1365-2052.2002.00848.x
  19. Komatsu, M., Abe, T. and Oishi, T. 1979. Genetic Variation of Serum post-albumin and post-transferrin in nine East Asian and European Cattle Breeds. Animal Blood Groups Biochemistry and Genetics 10: 185-188
  20. Lee, C. and Pollak, E. J. 2002. Genetic antagonism between body weight and milk production in beef cattle. J. Anim. Sci. 80:316-321
  21. Li, K., Chen, Y., Moran, C., Fan, B., Zhao, S. and Peng, Z. 2000. Analysis of diversity and genetic relationships between four Chinese indigenous pig breeds and one Australian commercial pig breed. Anim. Genet. 31:322-325 https://doi.org/10.1046/j.1365-2052.2000.00649.x
  22. Loftus, R. T., MacHugh, D. E., Ngere, L. O., Balain, D. S., Badi, A. M., Bradley, D. G. and Cunningham, E. P. 1994a. Mitochondrial genetic variation in European, African and Indian cattle populations. Anim. Genet. 25:265-271 https://doi.org/10.1111/j.1365-2052.1994.tb00203.x
  23. Loftus, R. T., MacHugh, D. E. Bradley, D. G., Sharp, P.M. and Cunningham, P. 1994b. Evidence for two independent domestications of cattle. Proc. Natl. Acad. Sci. USA. 91:2757-2761 https://doi.org/10.1073/pnas.91.7.2757
  24. Loftus, R. T., Ertugrul, O, Harba, A. H., El-Barody, M. A. A., MacHugh, D. E., Park, S. D. E. and Bradley, D. G. 1999. A microsatellite survey of cattle from a centre of origin: the Near East. Molecular Ecology 8:2015-2022 https://doi.org/10.1046/j.1365-294x.1999.00805.x
  25. MacHugh, D. E., Loftus, R. T., Bradley, D. G., Sharp, P. M. and Cunningham, P. 1994. Microsatellite DNA variation within and among European cattle breeds. Proceeding of Royal Society of London B 256:25-31 https://doi.org/10.1098/rspb.1994.0044
  26. MacHugh, D. E., Shriver, M. D., Loftus, R. T., Cunningham, P. and Bradley, D. G. 1997. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 146:1071-1086
  27. Mannen, H., Tsuji, S., Loftus, R. T. and Bradley, D. G. 1998. Mitochondrial DNA Variation and Evolution of Japanese Black Cattle (Bos taurus). Genetics 150:1169-1175
  28. Miller, S. A., Dykes, D. D. and Polesky, H. F. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16:1215 https://doi.org/10.1093/nar/16.3.1215
  29. Moazami-Goudarzi, K., Laloe, D., Furet, J. P. and Grosclaude, F. 1997. Analysis of genetic relationships between 10 cattle breeds with 17 microsatellites. Anim. Genet. 28:338-345 https://doi.org/10.1111/j.1365-2052.1997.00176.x
  30. Namikawa, K. 1984. Historical breeding processes of Japanese beef cattle and preservation of genetic resources as economic farm animals. In: Wagyu, Japanese Beef Cattle. Wagyu Cattle Registry Association, Kyoto, Japan
  31. Nei, M., Tajima, F. and Tateno, Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19:153-170 https://doi.org/10.1007/BF02300753
  32. Notter, D. R. 1999. The Importance of Genetic Diversity in Livestock Populations of the Future. J. Anim. Sci. 77:61-69
  33. Ota, T. 1993. DISPAN. Pennsylvania State University, PA. USA
  34. Park, S. D. E. 2000. Microsatellite Toolkit For MS Excel 97 or 2000. (in personnel communication)
  35. Phillips, R. W. 1961. World Distribution of The Major Types of Cattle. J. Hered. 52:207-213
  36. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 4:406-425
  37. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. 2nd Edition. Cold Spring Harbor Laboratory Press
  38. Smith, S. B., Zembayashi, M., Lunt, D. K., Sanders, J. O. and Gilbert, C. D. 2001. Carcass traits and microsatellite distributions in offspring of sires from three geographical regions of Japan. J. Anim. Sci. 79: 3041-3051
  39. Sneath, P. H. A. and Sokal. R. R. 1973. Numerical Taxonomy. Freeman, San Francisco
  40. 김경석, 엄지현, 최창본. 2001. Microsatellite 분석을 통한 한우의 유전적 다양성. 한국동물자원과학지 43:599-608
  41. 신원집, 신수길, 정진우, 김재우, 이지홍, 여정수. 1999. DNA 분석을 통한 한우, 연변황우 및 화우의 유전적 특성. 한국축산학회지 41(4):405-410
  42. 신형두, 이득환, 신언익, 양일석, 권종국. 1993. 혈액단백다형에 의한 지역별 한우의 유전거리에 관한 연구 한국축산학회지 35(5):347-353
  43. 육종륭, 김환경, 박항균, 윤희섭, 설동섭, 정창국. 1985. 한우. 향문사
  44. 정의룡, 김우태, 김연수, 한상기. 2000. AFLP marker를 이용한 한우의 유전자 지문 분석. 한국동물자원과학회지 42(4):391-406
  45. 정의룡, 김우태, 김연수, 한상기. 2001. VNTR Marker를 이용한 한우의 유전적 다양성 및 친자 감별. 한국동물자원과학회지 43(1):35-44
  46. 한상기, 윤희섭, 정의룡, 신유철, 변희대. 1995. 재래한우의 보존을 위한 혈청 및 혈구단백질의 유전적 다형현상. 한국축산학회지 37(1):43-51
  47. 한상기, 이기만. 1982. 한우 및 Holstein의 Hemoglobin 형에 관한 연구. 한국축산학회지 24(6):517-521
  48. 한상기, 정의룡, 양교석, 신유철. 1991. 한우개량을 위한 유단백질의 유전적 다형현상에 관한 연구. 한국축산학회지 33(2):111-120
  49. 한성욱. 1996. 가축의 품종. 선진문화사
  50. Troy, C. S., MacHugh, D. E., Bailey, J. F., Magee, D. A., Loftus, R. T., Cunningham, P., Chamberlain, A. T., Sykes, B. C. and Bradley, D. G. 2001. Genetic evidence for Near-Eastern origins of European cattle. Nature 410: 1088-1091 https://doi.org/10.1038/35074088
  51. MacHugh, D. E., Loftus, R. T., Cunningham, P. and Bradley, D. G. 1998. Genetic structure of seven European cattle breeds assessed using 20 microsatellites markers. Anim. Genet. 29:333-340 https://doi.org/10.1046/j.1365-2052.1998.295330.x
  52. Bradley, D. G., Loftus, R. T., Cunningham, P. and MacHugh, D. E. 1998. Genetics and Domestic Cattle Origins. Evolutionary Anthropology 6:79-86 https://doi.org/10.1002/(SICI)1520-6505(1998)6:3<79::AID-EVAN2>3.0.CO;2-R
  53. 이성수, 양영훈, 강승률, 오운용, 양보석, 고서봉, 오성종, 김규일. 2000. 한우, 제주재래흑우, 흑모화우와 갈모화우에서의 MSH Receptor (MCIR) 유전자의 유전자형 및 빈도 비교. 한국동물자원과학회지 42:253-260

Cited by

  1. The Genetic Relationship between Regional Population of Hanwoo Brands (Korean Cattle) Using Microsatellite Markers vol.27, pp.3, 2007, https://doi.org/10.5851/kosfa.2007.27.3.357
  2. Genome wide QTL mapping to identify candidate genes for carcass traits in Hanwoo (Korean Cattle) vol.34, pp.1, 2012, https://doi.org/10.1007/s13258-011-0081-6
  3. Assessment of Genetic Diversity, Relationships and Structure among Korean Native Cattle Breeds Using Microsatellite Markers vol.27, pp.11, 2014, https://doi.org/10.5713/ajas.2014.14435
  4. Genetic diversity of traditional Korean cattle breeds based on microsatellite polymorphisms vol.49, pp.2, 2015, https://doi.org/10.14397/jals.2015.49.2.37
  5. Molecular Genetic Considerations of Jeju Black Cattle using Microsatellite Markers vol.49, pp.2, 2015, https://doi.org/10.14397/jals.2015.49.2.57
  6. Dietary whole and cracked linseed increases the proportion of oleic and α-linolenic acids in adipose tissues and decreases stearoyl-coenzyme A desaturase, acetyl-coenzyme A carboxylase, and fatty acid synthase gene expression in the longissimus thoracis muscle of Yanbian Yellow cattle vol.95, pp.2, 2017, https://doi.org/10.2527/jas.2016.1050
  7. Genetic diversity and divergence among Korean cattle breeds assessed using a BovineHD single-nucleotide polymorphism chip vol.31, pp.11, 2018, https://doi.org/10.5713/ajas.17.0419