Nonlinear Dynamic Analysis of Space Steel Frames

Kim, Seung-Book
Cuong Ngo-Huu
Lee, Dong-Ho

Abstract

This paper presents a reliable numerical procedure for nonlinear time-history analysis of space steel frames subjected to dynamic loads. Geometric nonlinearities of member (P-δ) and frame (P-δ) are taken into account by the use of stability functions in framed stiffness matrix formulation. The gradual yielding along the member length and over the cross section is included by using a tangent modulus concept and a softening plastic hinge model based on the New-Orbison yield surface. A computer program utilizing the average acceleration method for the integration scheme is developed to numerically solve the equation of motion of framed structure formulated in an incremental form. The results of several numerical examples are compared with those derived from using beam element model of ABAQUS program to illustrate the accuracy and the computational efficiency of the proposed procedure.

Keywords: dynamic analysis, geometric and material nonlinearities, plastic-hinge, stability functions, space steel frames

1. 서 론

공간 강배대 구조물의 비선형 동적 해석

본 논문의 목적은 안정함수와 개선소성화법을 적용하여 공간 강배대 구조물의 비선형 동적 해석을 개발하는 것이다. 이에 해석방법은 적절한 홍량형 브레테스를 사용하여 현실 투성 확률을 가장하고자 하며, 부재의 단면은 완전 소성 모멘트 강도를 밝혀낼 수 있는 모델 단면으로 가정하였고, 투성이물은 무시하였다. 재료모멘트는 탄성-완전 소성으로 가정하였다. 축소되는 및 접중감소의 감소는 고려하였고 피밀의 강성은 그 영향이 작아 무시하였다. 변형을 반전 해석은 이중계수라 응용함으로써 고려하였다. 본 연구결과로 정확화된 빠드 구조의 동적평가방정식의 해를 수치적으로 구하기 위하여 적분형태의 일반방구요법을 사용하여 컴퓨터 프로그램을 개발하였다. 검증 예제로 다중 개발된 프로그램의 타당성을 입증하였다.

\[\begin{align*}
[\begin{array}{c}
P \\
M_{x} \\
M_{y} \\
M_{z} \\
T
\end{array} \right] &= \begin{bmatrix}
\frac{E_{L}}{L} & 0 & 0 & 0 & 0 \\
0 & \frac{E_{L}}{L} & 0 & 0 & 0 \\
0 & 0 & \frac{E_{L}}{L} & 0 & 0 \\
0 & 0 & 0 & \frac{E_{L}}{L} & 0 \\
0 & 0 & 0 & 0 & \frac{E_{L}}{L}
\end{bmatrix} \begin{bmatrix}
\delta \\
\theta_{p} \\
\theta_{p} \\
\theta_{p} \\
\phi
\end{bmatrix}
\end{align*} \]

\[\Theta_{y}, \Theta_{z}, \theta_{p} \text{ 및 } \phi \text{는 축 변형, 질량의 외전각 및 비틀림 각도이다. A, B, C 및 L은 면적, y 및 z축에 대한 단면 2차 모멘트 및 보-기동 요소의 값이며, E, G 및 J는 재료의 단면성수, 전단단성계수 및 비틀림 상수를 각각 나타낸다. } \]

\[S_{y} = \begin{cases}
\frac{\pi \sqrt{\rho_{y} \sin(\pi \rho_{y})} - \pi \rho_{y} \cos(\pi \rho_{y})}{2 - 2 \cos(\pi \rho_{y}) - \pi \rho_{y} \sin(\pi \rho_{y})} & \text{if } P > 0 \\
\frac{\pi \rho_{y} \cos(\pi \rho_{y})}{2 - 2 \cos(\pi \rho_{y}) + \pi \rho_{y} \sin(\pi \rho_{y})} & \text{if } P < 0
\end{cases} \]

\[S_{z} = \begin{cases}
\frac{\pi \rho_{z} \sin(\pi \rho_{z})}{2 - 2 \cos(\pi \rho_{z}) - \pi \rho_{z} \sin(\pi \rho_{z})} & \text{if } P > 0 \\
\frac{\pi \rho_{z} \cos(\pi \rho_{z})}{2 - 2 \cos(\pi \rho_{z}) + \pi \rho_{z} \sin(\pi \rho_{z})} & \text{if } P < 0
\end{cases} \]

\[S_{\phi} = \begin{cases}
\frac{\pi \rho_{\phi} \sin(\pi \rho_{\phi})}{2 - 2 \cos(\pi \rho_{\phi}) - \pi \rho_{\phi} \sin(\pi \rho_{\phi})} & \text{if } P > 0 \\
\frac{\pi \rho_{\phi} \cos(\pi \rho_{\phi})}{2 - 2 \cos(\pi \rho_{\phi}) + \pi \rho_{\phi} \sin(\pi \rho_{\phi})} & \text{if } P < 0
\end{cases} \]

\[P = P' \left(\frac{\pi^{2} E_{L}}{L^{2}} \right), \quad \rho_{y} = P' \left(\frac{\pi^{2} E_{L}}{L^{2}} \right) \quad \text{ 및 } \quad P' = \pm \text{가 성립한다.} \]

2. 정의

2.1 기하학적 비선형 효과

축방향력에 의하여 부재의 외전각이 감소하는 효과를 고려하는 안정함수를 사용하여 기하학적 비선형 효과를 고려하였다. 3차원 보-기동 요소에 대하여 안정함수를 사용한 원-변위 관계는 식 (1)과 같이 나타낼 수 있다.

여기서, \(P, M_{x}, M_{y}, M_{z}, T, y, z, \delta, \theta_{p}, \phi, \rho \) 및 \(\phi \)는 각각 측력, \(x, y, z \)축에 대한 단부모멘트 및 비틀림을 각각 나타낸다. \(\delta, \theta_{p}, \phi, \rho \)는 각각의 \(x, y, z \)축에 대하여 안정함수이며, 이의 식 (2)와 같이 나타낼 수 있다.
에서의 탄성영역이 감소함에 따라 탄성계수를 감소시키는 방법을 사용하였다. CRC 접선계수(\(E_s\))는 식 (3)과 같이 나타낼 수 있다.

\[
E_s = 1.0E \quad \text{for} \quad P \leq 0.5P_y
\]

(3a)

\[
E_s = 4 \frac{P}{P_y} \left(1 - \frac{P}{P_y}\right) E \quad \text{for} \quad P > 0.5P_y
\]

(3b)

2.3압력에 의한 점진적 소성화를 나타내는 포물선 함수

접선탄성계수 모델은 축방향력을 받는 부재의 점진적 소성화는 적절히 고려할 수 있으나, 축방향력과 횡모멘트를 받는 부재의 점진적 소성화를 나타내기에는 부적합하다. 힘에 의한 부분 소성화 효과를 고려하기 위하여 소성현지에 대한 점진적 강성 감소 모델이 요구된다. 현지가 탄성장상에서 완전 소성 강성에 이르기 까지 점진적으로 변화하는 것을 나타내기 위하여 포물선 함수를 사용하였다. 부재의 양단에서 점진적 소성화가 발생할 때의 힘-변위 관계는 식 (4)와 같이 정식화 된다.

\[
\begin{pmatrix}
P \\ M_{vu} \\ M_{vu} \\ T
\end{pmatrix} = \begin{pmatrix}
\frac{E_A}{L} & 0 & 0 & 0 & 0 \\
0 & k_{uv} & k_{uv} & 0 & 0 \\
0 & k_{uv} & k_{uv} & 0 & 0 \\
0 & 0 & 0 & k_{uv} & k_{uv} \\
0 & 0 & 0 & k_{uv} & k_{uv} \\
0 & 0 & 0 & 0 & \frac{G_d}{L}
\end{pmatrix} \begin{pmatrix}
\delta \\ \theta_u \\ \theta_u \\ \theta_u \\ \theta_u \\ \phi
\end{pmatrix}
\]

(4)

여기서,

\[
k_{uv} = \frac{E_A}{S_1} \left(S_3 - \frac{S_2^2}{S_1} (1 - \eta_A) \right) \frac{E_A}{L}
\]

(5a)

\[
k_{uv} = \frac{E_A}{S_1} \left(S_3 - \frac{S_2^2}{S_1} (1 - \eta_A) \right) \frac{E_A}{L}
\]

(5b)

\[
k_{uv} = \frac{E_A}{S_1} \left(S_3 - \frac{S_2^2}{S_1} (1 - \eta_A) \right) \frac{E_A}{L}
\]

(5c)

\[
k_{uv} = \frac{E_A}{S_1} \left(S_3 - \frac{S_2^2}{S_1} (1 - \eta_A) \right) \frac{E_A}{L}
\]

(5d)

\[
k_{uv} = \frac{E_A}{S_1} \left(S_3 - \frac{S_2^2}{S_1} (1 - \eta_A) \right) \frac{E_A}{L}
\]

(5e)

\[
k_{uv} = \frac{E_A}{S_1} \left(S_3 - \frac{S_2^2}{S_1} (1 - \eta_A) \right) \frac{E_A}{L}
\]

(5f)

\[
\eta_A 및 \eta_B는 \text{실수} \text{계수로서 A 및 B 단에서의 소성화에 의한 부재의 점진적 비탄성 강성 감소를 고려한다. 부재가 탄성 상태일 때는 } n=1.0 \text{이고, 소성현지가 형성될 때는 } n=0.0 \text{이다. 계수 } a \text{는 포물선 함수로부터 아래의 식 (6)과 같이 정의된다.}
\]

\[
\eta = 1.0 \quad \text{for} \quad \alpha \leq 0.5
\]

(6a)

\[
\eta = 4 \alpha (1 - \alpha) \quad \text{for} \quad \alpha > 0.5
\]

(6b)

여기서, \(\eta\)는 단면에 작용하는 부재력의 크기를 나타내는 함수이다. 본 연구에서는 \(\alpha\)의 함수로 아래의 식 (7)과 같은 New Orbison 완전 소성화를 사용하였다.

\[
\alpha = p^2 + m_s^2 + m_s^4 + 3.5p^2 m_s^2 + 3.0p^2 m_s^2 + 4.5m_s^4 m_s^2
\]

(7)

여기서, \(p = P/P_y, m_s = M_s/M_{py}(\text{강축}), m_y = M_y/M_{py}(\text{익축})\)이다. 만약 부재력이 항복점을 보이면, 즉 \(\alpha > 1\)이며 이분법(binary method)을 적용하여 원부재력의 방향을 조정하여 부재력을 수정하며, 수정 부재력은 항복면에 위치하게 된다. 동적하중 작용방향의 감작성 변화 때문에 현지에 발생하는 변형을 반전효과를 고려하기 위하여 부재단부의 소성화에 의한 부재의 점진적 소성강성 감소를 나타내는 계수인 \(n\)를 Chen과 Lui의 이중계수 이론을 바탕으로 수정 하면 아래의 식 (8) 및 (9)와 같이 나타낼 수 있다(Chen 등, 1987).

\[
\eta_d = \sqrt{\eta_d^2 \eta_h}
\]

(8)

\[
\eta_d = \frac{4n_b}{1 + \sqrt{\eta_b}}
\]

(9a)

\[
\eta_d = \frac{2n_b}{1 + n_b}
\]

(9b)

2.4전단변형 효과

보기등 요소의 전단 변형 효과를 고려하는 힘-변위 관계는 식 (10)과 같이 정식화 된다.

\[
\begin{pmatrix}
P \\ M_{vu} \\ M_{vu} \\ T
\end{pmatrix} = \begin{pmatrix}
\frac{E_A}{L} & 0 & 0 & 0 & 0 \\
0 & C_{LV} & C_{LV} & 0 & 0 \\
0 & C_{LV} & C_{LV} & 0 & 0 \\
0 & 0 & 0 & C_{NZ} & C_{NZ} \\
0 & 0 & 0 & C_{NZ} & C_{NZ} \\
0 & 0 & 0 & 0 & \frac{G_d}{L}
\end{pmatrix} \begin{pmatrix}
\delta \\ \theta_{uA} \\ \theta_{uA} \\ \theta_{uA} \\ \theta_{uA} \\ \phi
\end{pmatrix}
\]

(10)

여기서,
공간 장비 대구조물의 비선형 동적 해석

\[
\begin{align*}
C_{ly} &= \frac{k_{ly}y_{ij}y - k_{ly}y + k_{ly}A_{sy}GL}{k_{ly}y + k_{ly}y + 2k_{ly}v + A_{sy}GL} \\
C_{uv} &= \frac{-k_{uv}y_{ij}y + k_{uv}y + k_{uv}A_{sy}GL}{k_{uv}y + k_{uv}y + 2k_{uv}v + A_{sy}GL} \\
C_{ju} &= \frac{k_{ju}y_{ij}y - k_{ju}y + k_{ju}A_{sy}GL}{k_{ju}y + k_{ju}y + 2k_{ju}v + A_{sy}GL} \\
C_{izz} &= \frac{k_{izz}k_{ij} + k_{izz} + k_{ij}A_{sy}GL}{k_{izz} + k_{ij} + 2k_{ij}A_{sy}GL} \\
C_{uz} &= \frac{-k_{uz}k_{ij} + k_{uz} + k_{ij}A_{sy}GL}{k_{uz} + k_{ij} + 2k_{ij}A_{sy}GL} \\
C_{zz} &= \frac{k_{zz}k_{ij} + k_{zz} + k_{ij}A_{sy}GL}{k_{zz} + k_{ij} + 2k_{ij}A_{sy}GL}
\end{align*}
\]

여기서, \(A_{sy} \) 및 \(A_{sz} \)는 각각 \(y \) 및 \(z \)축에 대한 전단면적을 나타낸다.

2.5 전동해석

공간 볼데의 전동수와 모듈을 구하기 위하여, 아래의 식 (12)와 같은 고유치 문제의 해를 구하여야 한다.

\[
[K_0] = \omega^2[M]\varphi
\]

여기서, \([K_0]\)는 초기 강성행렬, \([M]\)는 질량행렬 행렬, \(\varphi\)는 모드형상 및 \(\omega\)는 모드형상 \(\varphi\)에 대한 원진동수이다.

2.6 동적평가방정식

위에서 언급한 개선호소성장에 의해 유도된 식 (10)의 정적평정방정식의 확장을 통하여 동적평가방정식을 구성하였다. 볼데에 대한 동적평가방정식의 흐림전형태는 아래의 식 (13)과 같다.

\[
[M][\Delta u] + [C][\dot{\Delta} u] + [K][\ddot{\Delta} u] = [F]
\]

여기서, \([M]\)은 행렬의 대각행렬로 회전 자유도에 대한 질량을 "0"이고, 볼데 자유도에 대한 질량은 정점에 작용하는 감정압력(Slumped Mass)으로 구성되는 대각 정렬행렬. \([A]\)는 식 (10)에서 보는 바와 같이 비선형, 비평형 및 변형을 반전 효과를 모두 고려하는 강성행렬. \([C] = \alpha_0[M] + \alpha_1[K_0]\)는 Rayleigh 감쇠행렬. \(\alpha_0\) 및 \(\alpha_1\)는 각각 절편 및 성장 비례 감쇠계수. \([\Delta u], [\dot{\Delta} u], [\ddot{\Delta} u]\)는 각각 시간에 따른 변동하는 중분 기속도, 속도, 변위 및 가속도이다. 식 (13)의 각 단계 동적평가방정식의 해에 대하여 Newmark 법을 적용하면 아래의 식 (14)와 같이 나타낼 수 있다.

\[
\begin{align*}
[\dot{\Delta} u] &= [u] + (1 - \gamma)/2 \Delta t[\ddot{\Delta} u] + \gamma \Delta t[\dot{\Delta} u] \\
[\Delta u] &= [u] + \Delta t[\dot{\Delta} u] + (0.5 - \beta)/(2\Delta t)^2[\ddot{\Delta} u] + \beta(\Delta t)^2[\dot{\Delta} u]
\end{align*}
\]

여기서, \([u], [\dot{u}], [\ddot{u}]\)는 각각 시간 \(t\)에서의 전체 기속도, 속도 및 변위 벡터이다. 계수 \(\beta\)는 각 단계의 가속도 변화 및 Newmark법의 안정과 정밀도를 결정한다. 여기서 \(\beta\)는 평균 가속도법의 가속에 대응하는 \(1/4\) 및 \(1/2\) 을 선택하였다. 따라서, 식 (13)의 중분형인 동적평가방정 식은 아래의 식 (15)와 같이 나타낼 수 있다.

\[
\begin{align*}
[K] + \frac{\gamma}{\beta \Delta t} [C] + \frac{1}{\beta(\Delta t)^2} [M] [\ddot{\Delta} u] &= [F] + \frac{1}{\beta \Delta t} [M] [\dot{\Delta} u] + \frac{1}{2\beta} [M] [\Delta u] + \Delta t \left(\frac{1}{2\beta} - 1 \right) [C] [\dot{u}]
\end{align*}
\]

\[
\begin{align*}
\Delta u &= \frac{\gamma}{\beta \Delta t} [\Delta u] - \frac{\gamma}{\beta} [\ddot{\Delta} u] + \Delta t \left(1 - \frac{\gamma}{\beta} \right) [\dot{\Delta} u] \\
\dot{\Delta} u &= \frac{1}{\beta(\Delta t)^2} [\ddot{\Delta} u] - \frac{1}{\beta \Delta t} [\dot{\Delta} u] - \frac{1}{2\beta} [\ddot{\Delta} u] \\
[\dot{\Delta} u] &= [u] + [\dot{u}] \\
[\ddot{\Delta} u] &= [u] + [\ddot{u}] \\
[\dot{\Delta} F] &= [F] + [\dot{F}]
\end{align*}
\]

식 (15)와 (16)의 수치해석 과정은 볼데가 파괴되거나 마지막 단계의 해석시간에 도달할 때까지 다음 시간 단계에 대하여 반복된다.

3. 결론

공간 볼데 구조물의 동적 고양이뿐만 아니라 지진로동 해석 시 비선형 고양을 예측하기 위하여 앞서 언급한 식들을 기초로하여 컴퓨터 프로그램 PAAP-Dynat을 개발하였다. 결

중 예제에 대하여ABAQUS 및 개발된 프로그램에 의한 해석 결과를 비교함으로써 개발된 프로그램의 정밀도와 해석시간에 대한 효율성을 입증하였다. ABAQUS의 한정된 사

입력지진파의 최대지반가속도와 시간간격을 표 1에 나타내었다. 구조물의 손상활용에 의한 영향을 동정해석에 반영하기 위하여 정적해석을 먼저 수행한 후, 지진가중 계수 시 동적 시간이익 해석을 수행하였다. 진동특성에서 구한 제 1, 2모드에 기초하여 정성 감쇠비 5%와 동등한 급양 및 강성 비례감쇠계수를 사용하였다.

표 1 지진기록의 최대지반가속도와 이에 대응하는 시간 단계

<table>
<thead>
<tr>
<th>지진</th>
<th>PGA (g)</th>
<th>시간 단계 (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Centro (1940) (Array, #9, USGS Station 117)</td>
<td>0.319</td>
<td>0.020</td>
</tr>
<tr>
<td>Loma Prieta (1989) (Capitola, 000, CDMG Station 47125)</td>
<td>0.529</td>
<td>0.005</td>
</tr>
<tr>
<td>Northridge (1994) (Simi Valley-Katherine, 090, USC Station 90055)</td>
<td>0.640</td>
<td>0.010</td>
</tr>
<tr>
<td>San Fernando (1971) (Pacoima Dam, 254, CDMG Station 279)</td>
<td>1.160</td>
<td>0.010</td>
</tr>
</tbody>
</table>

3.1 공간 1층 2층 빠데 구조물

각 층경에 절량이 집중된 공간 1층 2층 빠데의 형상과 물성치를 그림 2에 나타내었다.

공간 1층 2층 빠데의 형상은 대칭이나 점령분포는 비대칭이다. 해석모델에서, 각 부재당 2개의 요소를 사용하였다. 진동해석 수행후, 지진 작용방향 제 1, 2 모드의 고유주파수 이에 대응하는 빠데의 모드형상을 표 2 및 그림 3에 비교하였다. 표 2 및 그림 3에서 보는 바와 같이 ABAQUUS 및 PAAP-Dyna 프로그램으로 구한 본 빠데의 동적 특성이 매우 잘 일치하는 것을 알 수 있었다. 비선형탄성 및 비선형비탄성 해석에 의한 빠데의 2층 상단 변위 응답을 그림 4에
표 2 2층 벽대 구조물의 지진 작용방향 제 1, 2 모드의 고유주기 비교

<table>
<thead>
<tr>
<th>모드</th>
<th>주기 (sec) ABAQUS</th>
<th>주기 (sec) PAAP-Dyna</th>
<th>오차 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1차</td>
<td>0.4340</td>
<td>0.4352</td>
<td>-0.28</td>
</tr>
<tr>
<td>2차</td>
<td>0.1217</td>
<td>0.1220</td>
<td>-0.32</td>
</tr>
</tbody>
</table>

나타내었다. 그림 4에서 보는 바와 같이 SE(Second-order Elastic) 및 SI(Second-order Inelastic)는 각각 비선형탄성 및 비선형비탄성 해석을 의미한다. 2층 상단 최대변위의 비교 및 이에 대응하는 시간을 표 3에 나타내었다. 그림 4에서 보는 바와 같이 ABAQUS와 PAAP-Dyna 프로그램은 모델의 경우에 대하여 거의 동일한 해석결과를 보였고, Loma-Prieta, Northridge 및 San Fernando 지진 때의 시비선형비탄성 해석의 경우에 비탄성 기동 때문에 미소의 영구소성 변화가 발생하였다. 가장 작은 최대지반 가속도를 가지

그림 3 2층 벽대 구조물의 지진 작용방향 제 1, 2 모드형상 비교
고 있는 El-Centro 지진의 경우에는 비선형탄성 및 비선형 비탄성 해석의 변위응답이 거의 일치하였다. 왜냐하면 El-Centro 지진재사시 벽대 구조물은 단지 탄성거동만을 하기 때문이다.

![El Centro 지진](image1)

![Loma Prieta 지진](image2)

![Northridge 지진](image3)

![San Fernando](image4)

그림 4 2층 벽대 구조물의 2층 상단변위 비교
표 3. 2층 배대 구조물의 최대 상대변위의 이에 대응하는 시간

<table>
<thead>
<tr>
<th>지진</th>
<th>최소/ 최대</th>
<th>해석</th>
<th>ABAQUS</th>
<th>PAAP-Dyna</th>
<th>오차 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>변위 (mm)</td>
<td>시간 (sec)</td>
<td>변위 (mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Centro</td>
<td>최대 36.95</td>
<td>2.520</td>
<td>35.69</td>
<td>2.520</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td>최소 -44.67</td>
<td>2.740</td>
<td>-43.02</td>
<td>2.740</td>
<td>3.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loma Prieta</td>
<td>최대 75.62</td>
<td>6.950</td>
<td>74.97</td>
<td>6.940</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>최소 -72.46</td>
<td>6.755</td>
<td>-71.40</td>
<td>6.745</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northridge</td>
<td>최대 87.38</td>
<td>5.010</td>
<td>86.24</td>
<td>5.010</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>최소 -93.07</td>
<td>5.240</td>
<td>-92.14</td>
<td>5.230</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Fernando</td>
<td>최대 130.88</td>
<td>8.600</td>
<td>129.50</td>
<td>8.590</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>최소 -131.46</td>
<td>8.820</td>
<td>-131.08</td>
<td>8.800</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2 공간 4층 배대 구조물

개발된 프로그램의 타당성을 입증하기 위하여 Campbell이 제시한 2배 3층 강대 배대 구조물에 대하여 경증 변형 해석을 수행하였다. 본 연구에서는 Campbell 프레임의 동일한 형상과 부재를 사용하였으나, 그의 강도는 베어드는 모델링에서 주심하였다. 또한, Campbell 프레임은 실장이 너무 작으므로, 본 연구에서는 지진하중 계기 시 비대칭 성장을 명확하게 나타내도록 큰 실장으로 하였다. 본 연구에서 사용한 수치는 Campbell 프레임의 형상, 실장분포 및 동성체를 그림 5에 나타내었다.

수치모델링에서 각 2층대 1개의 요소를 사용하였다. ABAQUS 및 PAAP-Dyna 프로그램의 진동해석에 의한 지진 작용 방향 제 1, 2, 3모드의 고유주기와 이에 대응하는 4층 배대의 모드 형상을 표 4 및 그림 8에 나타내었다. 표 4 및 그림 8에서 보는 바와 같이 진동해석 결과가 매우 잘 일치하는 것을 알 수 있다.

4개의 서로 상이한 지진하중에 대하여 ABAQUS 및 PAAP-Dyna 프로그램에 의한 배대장 A절점의 x축 방향 4층 상단 변위 응답을 그림 7에 나타내었다. 4개의 서로 다른 지진하중에 대하여 최대 변위 및 이에 대응하는 시간을 표 5에 비교하였다. 그림 7에서 보는 바와 같이 모든 경우에 대하여 해석결과가 매우 잘 일치하였고, 비슷한 태생 해식의 경우에 상당한 양구소변형이 발생하였다. 이 점은 실제에서 본 바와 같이 제한된 프로그램(PAAP-Dyna)은 성능이 뛰어난 Newton-Raphson의 중요 인자를 끌어당기지 못할 수 있다. 모든 경우에 대하여 해석결과가 매우 잘 일치하였고, 4개의 서로 상이한 지진하중 중에서 해석시간이 가장 긴 Loma-Prieta 지진에 대해 제 4층 배대에 대하여 ABAQUS 및 PAAP-Dyna 해석시간은 각각 12시간 및 5시간이 소요되었다. 이와 같은 결과는 개발된 프로그램의 해석시간에 대한 효율성을 입증한다. 해석에 사용된 컴퓨터의 사양은 CPU : Intel Pentium IV 3.20GHz, memory : 2GB이다. Northridge 및 San Fernando 지진에 대해 시 가중 심각한 항복 발생 시점의 소실 현상 발생 위치 및 시간을 그림 8에 나타내었다. 그림 8에서 보는 바와 같이 ABAQUS의 PAAP-Dyna의 소실현상 발생 위치 및 시간이 매우 잘 일치한다는 것을 알 수 있다.

표 4. 4층 배대 구조물의 지진작용방향 제 1, 2, 3 모드의 고유주기 비교

<table>
<thead>
<tr>
<th>모드</th>
<th>ABAQUS (sec)</th>
<th>PAAP-Dyna (sec)</th>
<th>오차 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1차</td>
<td>1.1764</td>
<td>1.1746</td>
<td>0.15</td>
</tr>
<tr>
<td>2차</td>
<td>0.4077</td>
<td>0.4029</td>
<td>1.18</td>
</tr>
<tr>
<td>3차</td>
<td>0.1714</td>
<td>0.1707</td>
<td>0.41</td>
</tr>
</tbody>
</table>
그림 6 4층 벽돌 구조물의 지진 작용방향 제 1, 2, 3 모드형상 비교

(a) El Centro 지진
(b) Loma Prieta 지진
(c) Northridge 지진
(d) San Fernando

그림 7 4층 벽돌 구조물 상 절점 A의 상대변위 비교

402 한국전산구조공학회 논문집 제18권 제4호(2005.12)
표 5 4층 벽둘 구조물의 최대 상대변위의 이에 대응하는 시간

<table>
<thead>
<tr>
<th>지진</th>
<th>최소/ 최대</th>
<th>해석 종류</th>
<th>ABAQUS</th>
<th>PAAP-Dyna (제한)</th>
<th>오차 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Centro</td>
<td></td>
<td>비선형 탄성</td>
<td>5.013</td>
<td>3.520</td>
<td>5.042</td>
</tr>
<tr>
<td></td>
<td></td>
<td>비선형 비탄성</td>
<td>4.901</td>
<td>3.520</td>
<td>4.847</td>
</tr>
<tr>
<td></td>
<td></td>
<td>최소</td>
<td>-4.538</td>
<td>2.980</td>
<td>-4.458</td>
</tr>
<tr>
<td></td>
<td></td>
<td>최소</td>
<td>-4.575</td>
<td>2.980</td>
<td>-4.612</td>
</tr>
<tr>
<td>Loma Prieta</td>
<td></td>
<td>비선형 탄성</td>
<td>8.880</td>
<td>9.355</td>
<td>8.531</td>
</tr>
<tr>
<td></td>
<td></td>
<td>비선형 비탄성</td>
<td>7.845</td>
<td>14.390</td>
<td>7.617</td>
</tr>
<tr>
<td></td>
<td></td>
<td>최소</td>
<td>-8.791</td>
<td>9.960</td>
<td>-8.553</td>
</tr>
<tr>
<td></td>
<td></td>
<td>최소</td>
<td>-6.846</td>
<td>8.755</td>
<td>-6.490</td>
</tr>
<tr>
<td>Northridge</td>
<td></td>
<td>비선형 탄성</td>
<td>9.235</td>
<td>5.120</td>
<td>8.838</td>
</tr>
<tr>
<td></td>
<td></td>
<td>비선형 비탄성</td>
<td>5.436</td>
<td>5.140</td>
<td>5.227</td>
</tr>
<tr>
<td></td>
<td></td>
<td>최소</td>
<td>-8.863</td>
<td>5.520</td>
<td>-9.064</td>
</tr>
<tr>
<td></td>
<td></td>
<td>최소</td>
<td>-5.694</td>
<td>5.500</td>
<td>-5.475</td>
</tr>
<tr>
<td>San Fernando</td>
<td></td>
<td>비선형 탄성</td>
<td>11.414</td>
<td>3.660</td>
<td>11.027</td>
</tr>
<tr>
<td></td>
<td></td>
<td>비선형 비탄성</td>
<td>12.149</td>
<td>3.720</td>
<td>11.744</td>
</tr>
<tr>
<td></td>
<td></td>
<td>최소</td>
<td>-12.242</td>
<td>4.230</td>
<td>-12.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>최소</td>
<td>-6.911</td>
<td>3.190</td>
<td>-6.804</td>
</tr>
</tbody>
</table>

4. 결론

본 연구에서는 기학적 및 재료적 비선형성을 동시에 고려하는 비선형 동적 시간 이력 해석에 대한 간편하고 효율적인 수치해석 기법을 제시하였다. 본 연구에서 개발된 컴퓨터 프로그램의 정밀도와 해석시간의 효율성을 4개의 서로 상이한 지진중재 하여 시 경우에 제시하였다. 또한 본 연구에서 개발된 컴퓨터 프로그램의 정밀도를 비교하여 정확한 결과를 얻을 수 있다. 그러나 본 연구에서 개발된 컴퓨터 프로그램의 정밀도는 종래의 고비용과 많은 해석시간이 소요되는 구조해석 소프트웨어 대신에 정적 및 동적중재 하여 시 공간 장대소 구조물의 비선형 가동을 갚은 해석시간에 매우 정밀하게 예측할 수 있으며, 설계 실무에서 경제적이고 정밀한 해석 기법으로 활용할 수 있을 것이다.

감사의 글

본 연구는 과학기술부의 국가지정연구실사업(M1-0204-00-0143) 지원으로 수행되었으며 이에 감사드립니다.

기호 정리

\[P: \text{축력, } M_{y, A}, M_{y, B}, M_{z, A}, M_{z, B}: y \text{과 } z \text{축에 대한 단부 모멘트, } T: \text{비틀림, } \delta: \text{축 변형, } \theta_{y, A}, \theta_{y, B}, \theta_{z, A}, \theta_{z, B}: \text{점점의 회전각, } \phi: \text{비틀림각, } A: \text{면적, } I_1, I_2: y \text{과 } z \text{축에 대한 단면 2차모멘트, } L: \text{보-기둥 요소의 길이, } E: \text{탄성계수, } G: \text{전단탄성계수, } J: \text{비틀림 상수, } S_1, S_2, S_3, S_4: y \text{와\]
참 고 문 현

ABAQUS/Standard user’s manual—Volume II. H.K.S.

