Characterization of Alanine Scanning Mutants of a Peptide Specifically Binding to $TiO_{2}$ Nanoparticles

$TiO_{2}$ Nanoparticle에 특이적으로 결합하는 Peptide의 Alanine Scanning Mutant의 성질에 관한 연구

  • Seo, Min-Hee (Departments of Bioscience and Biotechnology Hankuk University of Foreign Studies) ;
  • Chael, Hee-Kwon (Departments of Bioscience and Chemistry Hankuk University of Foreign Studies) ;
  • Myung, Heejoon (Departments of Bioscience and Biotechnology Hankuk University of Foreign Studies)
  • 서민희 (한국외국어대학교 생명공학과) ;
  • 채희권 (한국외국어대학교 화학과) ;
  • 명희준 (한국외국어대학교 생명공학과)
  • Published : 2005.12.01

Abstract

We have previously reported the isolation and characterization of peptides binding to $TiO_{2}$ nanoparticles from phage display peptide libraries. One of the peptides (PEP9) was selected and mutant peptide-displaying phages were produced by alanine scanning mutagenesis. The mutant phages were subjected to binding analysis to $TiO_{2}$ nanoparticles. When the proline at residue 4 was substituted by alanine, the binding activity was reduced to $10\%$ of that of wild type PEP9. Substitution of valine at residue 2, serine at residue 3, and isoleucine at residue 5 also decreased the binding to $40\%$. Based on these observations, we concluded that the three dimensional structure generated by residues 2-5 was the critical factor for the binding between PEP9 and the nanoparticle.

Keywords

nanoparticle;phage display;peptide;alanine scanning

References

  1. Lee, S.-W, C. Mao, C. E. Flynn, and A. M. Belcher. 2002. Ordering of quantum dots using genetically engineered viruses. Science 296: 892-895 https://doi.org/10.1126/science.1068054
  2. Sidhu, S. S. and S. Sachdev. 2001. Engineering M13 for phage display. J. Mol. Biol. 18: 57-63
  3. Weiss, G. A., C. K. Watanabe, A. Zhong, A. Goddard, and S. S. Sidhu. 2000. Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proc. Natl. Acad Sci. USA. 97: 8950-8954
  4. Weiss G. A. and S. S. Sidhu. 2000. Design and evolution of artificial MI3 coat proteins. J. Mol. Biol. 300: 213-219 https://doi.org/10.1006/jmbi.2000.3845
  5. Cesareni G. 1992. Peptide display on filamentous phage capsids. A new powerful tool to study protein-ligand interaction. FEBS Lett. 307: 66-70 https://doi.org/10.1016/0014-5793(92)80903-T
  6. Larocca, D. and A. Baird, 1999. Gene transter to mammalian cells using genetically targeted filamentous bacteriophage. FASEB J. 13: 727-734 https://doi.org/10.1096/fasebj.13.6.727
  7. Sidhu, S. S., W. J. Fairbrother, and K. Deshayes. 2003. Exploring protein-protein interactions with phage display. Chembiochem. 4: 14-25 https://doi.org/10.1002/cbic.200390008
  8. Mao, C., C. E. Flynn, A. Hayhurst, R. Sweeney, J. Qi, and A. M. Belcher. 2003. Viral assembly of oriented quantum dot nanowire. Proc. Natl. Acad Sci. USA. 100: 6946-6951
  9. Roth, T. A., G. A. Weiss, C. Eigenbrot, and S. S. Sidhu. 2002. A minimized M13 coat protein defines the minimum requirements for assembly into the bacteriophage particle. J. Mol. Biol. 322: 357-367 https://doi.org/10.1016/S0022-2836(02)00769-6
  10. Seo, M. H., H. K. Chae, and H. Myung. 2005. Selection and characterization of peptides specifically binding to $TiO_2$ nanoparticles. J. Microbial. Biotechnol.(in press)
  11. Mao, C., C. E. Flynn, D. J. Soils, B. D. Reiss, S. T. Kottmann, R. Y.Sweeney, A. Hayhurst, G. Georgiou, B. Invension, and A. M. Belcher, 2004. Virus-based toolkit for directed synthesis of magnetic and semi-conducting nanowires. Science 303: 213-217 https://doi.org/10.1126/science.1092740