Effects of Glucose Degradation Products on Human Peritoneal Mesothelial Cells

포도당분해산물이 사람 복막중피세포 활성화에 미치는 영향

  • 송재숙 (이화여자대학교 약학대학) ;
  • 이경림 (이화여자대학교 약학대학) ;
  • 하헌주 (이화여자대학교 약학대학)
  • Published : 2005.12.01


Both high glucose and glucose degradation products (GDP) have been implicated in alterations of peritoneal membrane structure and function during long-term peritoneal dialysis (PD). The present study examined the role of GDP including methylglyoxal (MGO), acetaldehyde, and 3,4-dideoxyglucosone (3,4-DGE) in HPMC activation with respect to membrane hyperpermeability or fibrosis. The role of reactive oxygen species (ROS) and activation of protein kinase C (PKC) in GDP-induced HPMC activation were also examined. Using M199 culture medium as control, growth arrested and synchronized HPMC were continuously stimulated by MGO, acetaldehyde, and 3,4-DGE for 48 hours. Vascular endothelial growth factor (VEGF) was quantified as a marker of peritoneal membrane hyperpermeability and fibronectin and heat shock protein 47 (hsp47) as markers of fibrosis. Involvement of ROS and PKC was examined by the inhibitory effect of N-acetylcystein (NAC) or calphostin C, respectively. MGO significantly increased VEGF (1.9-fold), fibronectin (1.5-fold), and hsp47 (1.3-fold) secretion compared with control M199. NAC and calphostin C effectively inhibited MGO-induced VEGF upregulation. Acetaldehyde stimulated and 3,4-DGE inhibited VEGF secretion. Fibronectin secretion and hsp47 expression in HPMC were not affected by acetaldehyde or 3,4-DGE In conclusion, MGO upregulated VEGF and fibronectin secretion and hsp47 expression in HPMC, and PKC as well as ROS mediate MGO-induced VEGF secretion by HPMC. This implies that PKC activation and ROS generation by GDP may constitute important signals for activation of HPMC leading to progressive membrane hyperpermeability and accumulation of extracellular matrix and eventual peritoneal fibrosis.


Human peritoneal mesothelial cells;glucose degradation products;protein kinase C;reactive oxygen species;vascular endothelial growth factor;fibronectin;heat shock protein 47


  1. Fenton. S. S., D. E. Schaubel, M. Desmeules, H. J. Morrison, Y. Mao, P. Copleston, J. R. Jeffery, and C. M. Kjellstrand. 1997. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am. J. Kidney Dis. 30: 334-342 https://doi.org/10.1016/S0272-6386(97)90276-6
  2. Lee, H. B., M. R. Yu, J. S. Song, and H. Ha. 2004. ROS amplify PKC signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells. Kidney Int. 65: 1170-1174 https://doi.org/10.1111/j.1523-1755.2004.00491.x
  3. Leung, J. C., L. Y. Chan, F. F. Li, S. C. Tang, K. W. Chan, T. M. Chan, M. F. Lam, A. Wieslander, and K. N. Lai. 2005. Glucose degradation products downregulate 20-1 expression in human peritoneal mesothelial cells: the role of VEGF. Nephrol. Dial. Transplant. 20: 1336-1349 https://doi.org/10.1093/ndt/gfh814
  4. Nilsson-Thorell, C. B., N. Muscalu, A. H. Andren, P. T. Kjellstrand, and A. P. Wieslander. 1993. Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Perit. Dial. Int. 13: 208-213
  5. Rhee, S. G. 1999. Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 31: 53-59 https://doi.org/10.1038/emm.1999.9
  6. Linden, T., A. Cohen, R. Deppisch, P. Kjellstrand, and A. Wieslander. 2002. 3,4-Dideoxyglucosone-3-ene (3,4-DGE): A cytotoxic glucose degradation product in fluids for peritoneal dialysis. Kidney Int. 62: 697-703 https://doi.org/10.1046/j.1523-1755.2002.00490.x
  7. Greenwel, P., J.-A. Dominues-Rosales, G. Mavi, M. Rivas-Estilla, and M. Rojkind. 2000. Hydrogen peroxide: A link between acetaldehyde-elicited ${\alpha}$(I) collagen gene upregulation an oxidative stress in mouse hepatic stellate cells. Hepatology 31: 109-116 https://doi.org/10.1002/hep.510310118
  8. Mata-Greenwood, E., A. Grobe, S. Kumar, Y. Noskina, and S. M. Black. 2005. Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-b1 and reactive oxygen species: a requirement for NADP(H) oxidase. Am. J. Physiol. 289: L288-L298
  9. Young, T. A., H. Wang, S. Munk, D. S. Hammoudi, D. S. Young, M. S. Mandelcom, and C. J. Whiteside. 2005. Vascular endothelial growth factor expression and secretion by retinal pigment epithelial cells in high glucose and hypoxia is protein kinase C-dependent. Exp. Eye. Res. 80: 651-662 https://doi.org/10.1016/j.exer.2004.11.015
  10. Combet, S., T. Miyata, P. Moulin, D. Pouthier, E. Goffin, and O. Devuyst. 2000. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J. Am. Soc. Nephrol. 11: 717-728
  11. Wieslander, A. P., M. K. Nordinn, O. T. Kjellstrand, and U. C. Boberg. 1991. Toxicity of peritoneal dialysis fluids on cultured fibroblasts, L-929. Kidney Int. 40: 77-79 https://doi.org/10.1038/ki.1991.182
  12. Che, W., M. Asahi, M. Takahashi, H. Kaneto, A. Okado, S. Higashiyama, and N. Taniguchi. 1997. Selective induction of heparin-binding epidermal growth factor-like growth factor by methylglyoxal and 3-deoxyglucosone in rat aortic smooth muscle cells. The involvement of reactive oxygen species formation and a possible implication for atherogenesis in diabetes. J. Biol. Chem. 272: 18453-1845 https://doi.org/10.1074/jbc.272.29.18453
  13. Davies. S. J., L. Phillips, P. F. Naish, and G. I. Russell. 2001. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J. Am. Soc. Nephrol. 12: 1046-1051
  14. Williams, J. D., K. J. Craig, N. Topley, C. von Ruhland, M. Fallon, G. R. Newman, R. K.Mackenzie, and G. T. Williams. 2002. Peritoneal Biopsy Study Group: Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 13: 470-479
  15. Margetts, P. J., M. Kolb, T. Galt, C. M. Hoff, T. R. Shockley, and J. Gauldie. 2001. Gene transfer of transforming growth factor-b1 to the rat peritoneum: effects on membrane function. J. Am. Soc. Nephrol. 12: 2029-2039
  16. Moist, L. M., F. K. Port, S. M. Orzol, E. W. Young, T. Ostbye, R. A. Wolfe, T. Hulbert-Shearon, C. A. Jones, and W. E. Bloembergen. 2000. Predictors of loss of residual renal function among new dialysis patients. J. Am. Soc. Nephrol. 11: 556-564
  17. Ha, H. and H. B. Lee. 2002. Peritoneal mesothelial cell biology in peritoneal dialysis. Nephrology 7: 220-226 https://doi.org/10.1046/j.1440-1797.2002.00122.x
  18. Wieslander, A. P., M. K. Nordin, E. Martinson, P. T. Kjellstrand, and U. C. Boberg. 1993. Heat-sterilized PD fluids impair growth and inflammatory responses of cultured cell lines and human leukocytes. Clin. Nephrol. 39: 343-348
  19. Stylianou, E., L. A. Jemmer, M. Davies, G. A. Coles, and J. D. Williams. 1990. Isolation, culture and characterization of human peritoneal mesothelial cells. Kidney Int. 37: 1563-1570 https://doi.org/10.1038/ki.1990.150
  20. Witoski, J., J. Wisniewska, K. Korybalska, T. O. Bebder, A. Breborowicz, G. M. Gahl, U. Frei, J. Passlick-Deetjen, and A. Jorres. 2001. Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells. J. Am. Soc. Nephrol. 12: 2434-2441
  21. Border, W. A. and N. A. Noble. 1994. Transforming growth factor-$\hat{a}$ in tissue fibrosis. N. Engl. J. Med. 333: 1286-1292
  22. Welton, A. G., C. G. Schalkwijk, P. M. ter Wee, S. Meijer, J. van den Bon, and R. J. Beelen. 2003. Single exposure of mesothelial cells to glucose degradation products (GDPs) yields early advanced glycation end-products (AGEs) and proinflammatory response. Perit. Dial. Int. 23: 213-221
  23. Inagi, R., T. Miyata, T. Yamamoto, D. Suzuki, K. Urakami, A. Saito, C. van Ypersele de Strihou, and K. Kurokawa. 1999. Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. FEBS Lett. 463: 260-264 https://doi.org/10.1016/S0014-5793(99)01642-7
  24. Linden, T., G. Forsback, R. Deppisch, T. Henle, and A. Wieslander. 1998. 3-Deoxyglucosone, a promoter of advanced glycation end products in fluids for peritoneal dialysis. Perit. Dial. Int. 18: 290-293
  25. Zweers, M. M., D. G. Struijk, W. Smit, and R. T. Krediet. 2001. Vascular endothelial growth factor in peritoneal dialysis:a longitudinal follow-up. J. Lab. Clin. Med. 137: 125-132 https://doi.org/10.1067/mlc.2001.112235