Production of Inulooligosaccharides by Endoinulinase Expressed in Saccharomyces cerevisiae

Saccharomyces cerevisiae에서 발현된 Endoinulinase를 이용한 Inulooligosaccharides의 생산

  • Kim Hyun-Chul (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim Hyun-Jin (Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Kim Byung-Woo (Department of Life Science & Biotechnology, Dong-Eui University) ;
  • Kwon Hyun-Ju (Department of Life Science & Biotechnology, Dong-Eui University) ;
  • Nam Soo-Wan (Department of Biotechnology & Bioengineering, Dong-Eui University)
  • 김현철 (동의대학교 바이오물질제어학과) ;
  • 김현진 (동의대학교 생명공학과) ;
  • 김병우 (동의대학교 생명응용과학과) ;
  • 권현주 (동의대학교 생명응용과학과) ;
  • 남수완 (동의대학교 생명공학과)
  • Published : 2005.12.01

Abstract

The endoinulinase gene (inu, 2.733 kb, EC 3.2.1.7) from Paenibacillus polymyxa was subcloned into an Escherichia coli-yeast shuttle vector with GALl promoter for the expression in Saccharomyces cerevisiae. The constructed plasmid, pYGENIU27 (8.6 kb) was introduced into S. cerevisiae SEY2102 cell and then the yeast transformant was selected on the synthetic defined media lacking uracil and on the inulin-containing media. The recombinant endoinulinase was predominantly localized in the periplasmic space of the yeast cell. The total activity of the endoinulinase reached 1.81 unit/ml by cultivation of yeast transformant on YPDG medium. The optimized conditions determined for the inulooligosaccharides (IOSs) production from inulin were as follows; pH, 8.0; reaction temperature, $45^{\circ}C$; inulin source, Jerusalem artichoke. Enzyme activity was stably maintained up to the pH of 10.0. Under the optimized condition and with endoinulinase of 36 unit/g-inulin, IOSs started to be produced after 10 min of enzymatic reaction. By the reaction with inulin, IOSs consisting of inulobiose (F2), inulotriose (F3), and inulotetraose (F4) were produced and F3 was the major product. Consequently, these data would be used as a fundamental parameters for the production of functional sweetener IOSs from inulin by recombinant yeast endoinulinase.

Keywords

Endoinulinase;Paenibacillus polymyxa;inulin;inulooligosaccharides;Saccharomyces cerevisiae

References

  1. Brevnova, E. E., D. G. Kozlov, B. D. Efremov, and S. V. Benevolensky. 1998. Inulase-secreting strain of Saccharomyces cerevisiae produces fructose. Biotechnol. Bioeng. 60: 492-497 https://doi.org/10.1002/(SICI)1097-0290(19981120)60:4<492::AID-BIT11>3.0.CO;2-K
  2. Eom, S. J., Y. M. Kwon and Y. J. Choi. 1995. Molecular cloning of Pseudomonas sp. inulinase gene and its expression in E. coli. Kor J. Appl. Microbiol. Biotechnol. 23: 550-555
  3. Hirst, E. L., D. J. Mcgilvary and E. G V. Percival. 1950. Studies on fructosans. J. Chem. Soc. 72: 1279-1284
  4. lto, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast ceils treated with alkali cations. J. Bacteriol. 153: 163-168
  5. Jin, Z., J. Wang, B. Jiang, and X. Xu. 2005. Production of inulooligosaccharides by endoinulinases from Aspergillus jicuum. Food Res. Int. 38: 301-30 https://doi.org/10.1016/j.foodres.2004.04.011
  6. Kim, D. H., Y. J. Choi, S. K. Song, and J. W. Yun. 1997. Production of inulo- oligosaccharides using endo-inulinase from Pseudomonas sp. Biotechnol. Left. 19: 369-371 https://doi.org/10.1023/A:1018311219788
  7. Kornfeld, R. and S. Kornfeld. 1985. Assembly of asparaginelinked oligosaccha- rides. Annu. Rev. Biochem. 54: 631-664 https://doi.org/10.1146/annurev.bi.54.070185.003215
  8. Kwon, Y. M., H. Y. Kim and Y. J. Choi. 2000. Cloning and characterization of Pseudomonas mucidolens exoinulinase. J. Microbiol. Biotechnol. 10: 238-243
  9. Ohta, K., S. Hamada, and T. Nakamura. 1993. Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59: 729-733
  10. Park, J. B. and Y. J. Choi. 1996. Purification and characterization of inulin fiuctotransferase (depolymerizing) from Arthrobacter sp. A-6. J. Microbial. Biotechnol. 6: 402-406
  11. Scotti, P. A., M. Praestegaard, R. Chambert and M. R. Petit-Glatron. 1996. The targeting of Bacillus subtilis levansucrase in yeast is correlated to both the hydrophobicity of the signal peptide and the net charge of the N-terminus mature part. Yeast 12: 953-963 https://doi.org/10.1002/(SICI)1097-0061(199608)12:10<953::AID-YEA998>3.0.CO;2-#
  12. Vandamme, E. J. and D. G. Derycke. 1983. Microbial inulinase: fermentation process, properties, and applications. Adv. Appl. Microbial. 29: 139-176 https://doi.org/10.1016/S0065-2164(08)70356-3
  13. Yun, J. W., Y. J. Choi, C. H. Song, and S. K. Song. 1999. Microbial production of inulooligosaccharides by an endoinulinase from Pseudomonas sp. expressed in Escherichia coli. J. Biosci. Bioeng. 87: 291-295 https://doi.org/10.1016/S1389-1723(99)80034-6
  14. Lim, C. K., H. C. Kim, K. H. Kim, B. W. Kim and S. W. Nam, 2004. Production of cyclofructan by cycloinulooligosaccharide fructanotransferase expressed in Saccharomyces cerevisiae. Kor. J. Micrbiol. Biotechnol. 32: 60-66
  15. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 55: 952-959
  16. Kanai, T., N. Ueki, T. Kawaguchi, Y. Teranishi, H. Atomi, C. Tomorbaatar, M. Ueda and A. Tanaka. 1997. Recombinant thermostable cycloinulooligosaccharide fructanotransferase produced by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 63: 4956-4960
  17. Emr, S. D., R. Schekman, M. C. Flessel, and J. Thorner. 1983. An MF${\alpha}$l-SUC2 (${\alpha}$-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc. Natl. Acad. Sci. USA. 80: 7080-7084
  18. Kingsman, S. M., A. T. Kingsman, M. J. Dobson, J. Mellar and N. A. Roberts. 1985. Biotechnol. Genet. Eng. Rev. 3: 377-415 https://doi.org/10.1080/02648725.1985.10647819
  19. Nam, S. W., H. Y. Park, J. H. Kim, J. H. Seo, N. S. Han and B. W. Kim. 2001. Expression of Bacillus macerans cyclodextrin glucanotransferase gene in Saccharomyces cerevisiae. Biotechnol. Left. 23: 727-730 https://doi.org/10.1023/A:1010303019603
  20. Bajpai, P. K. and P. Bajpai. 1991. Cultivation and utilization of Jerusalem artichoke for ethanol, single cell protein, and high fructose syrup production. Enz. Microbial. Technol. 13: 359-362 https://doi.org/10.1016/0141-0229(91)90158-7
  21. Nam, S. W., K. Yoda, and M. Yamasaki. 1993. Secretion and localization of invertase and inulinase in recombinant Saccharomyces cerevisiae. Biotechnol. Left. 15: 1049-1054 https://doi.org/10.1007/BF00129936
  22. Zhang, L., C. Zhao, D. Zhu, Y. Ohta, and Y. Wang. 2004. Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris. Protein Expression Purification 35: 272-275 https://doi.org/10.1016/j.pep.2004.02.015
  23. Han, Y. J., D. O. Kang, S. C. Lee, B. Y. Kim, H. H. Suh, J. M. Kim, T. I. Mheen and J. S. Ahn. 1994. Secretion of a Bacillus endoglucanase in Saccharomyces cerevisiae by its own signal sequence. J. Microbiol. Biotechnol. 4: 24-29
  24. Kasturi, L., H. Chen and S. H. Shakin-eshleman. 1997. Regulation of N-linked core glycosylation : use of a sitedirected mutagenesis approach to identify Asn-Xaa-Ser/Thr sequons that are poor oligosaccharide acceptors. Biochem. J. 323: 415-419 https://doi.org/10.1042/bj3230415
  25. Kim, Y. H., S. W. Nam, and B. H. Chung. 1998. Simultaneous saccharification of Inulin and ethanol fermentation by recombinant Saccharomyces cerevisiae secreting Inulinase. Biotechnol. Bioprocess Eng. 3: 55-60 https://doi.org/10.1007/BF02932502
  26. Jeon, S. J., D. J. You, H. J. Kwon, S. Kanaya, N. Kunihiro, K. H. Kim, Y. H. Kim and B. W. Kim. 2002. Cloning and characterization of cycloinulooligosaccharide fructanotransferase (CFTase) from Bacillus polymyxa MGL21. J. Microbiol. Biotechnol. 12: 921-928