Expression of Tkermomonoepora fusea Exoglucanase in Saccharomyces cerevisiae and Its Application to Cellulose Hydrolysis

Saccharomyces cerevisiae에서 Tkermomonospora fusca Exoglucanase의 발현 및 Cellulose분해에의 응용

  • Park Hyun-Soon (Department of Biotechnology & Bioengineering, Pukyung National University) ;
  • Kim Hyun-Chul (Biomaterial Control, Dong-Eui University) ;
  • Shin Dong-Ha (Insect Biotech Co.) ;
  • Kim Joong-Kyun (Department of Biotechnology & Bioengineering, Pukyung National University) ;
  • Nam Soo-Wan (Department of Biotechnology & Bioengineering, Dong-Eui University)
  • 박현순 (부경대학교 생물공학과) ;
  • 김현철 (동의대학교 바이오물질제어학과) ;
  • 신동하 ((주)인섹트바이오텍) ;
  • 김중균 (부경대학교 생물공학과) ;
  • 남수완 (동의대학교 생명공학과)
  • Published : 2005.12.01

Abstract

To develop effective and powerful probiotic, Saccharomyces cerevisiae strains producing cellulolytic enzymes were genetically brooded. For the production of exoglucanase, the plasmid pVT-TExo (8.8 kb) was constructed, in which Thermomonosporafusca exoglucanase gene (E3) was under the control of ADHl promoter, and introduced into S. cerevisiae SEY2102. When the transformant, S. cerevisiae SEY2102/pVT-TExo, was cultivated on YPD medium, the total expression level of avicelase reached about 190 unit/l. The secretion efficiency and plasmid stability were about $50\%\;and\;91\%$, respectively. Recombination exoglucanase enzyme bound to avicel better than Clostridium endoglucanase (CelA) and Trichoderma endoglucanase (C4) enzymes. The mixing ratio of E3 and CelA displaying the best synergistic hydrolysis for avicel was observed at 4:1. The mixture of endoglucanase (CelA) and exoglucanase (E3) resulted in 3.2-fold increase of avicelase activity and 2.5-fold enhanced production of sugar production from avicel, compared to the single enzyme treatment.

Keywords

Saccharomyces cerevisiae;exoglucanase;endoglucanase synergistic hydrolysis;cellulose

References

  1. Draborg, H., S. Christgau, T. Halkier, G. Rasmussen, H. Dalboge, and S. Kauppinen. 1996. Secretion of an enzymatically active Trichoderma harzianum endochitinase by Saccharomyces cerevisiae. Curr. Genet. 29: 404-409 https://doi.org/10.1007/BF02208622
  2. Kim, D. W., Y. H. Jang, and Y. K. Jeong, 1997. Adsorption behaviours of two cellobiohydrolase and thier core proteins from Trichoderma reesei on avicel PH101. Biotechnol. Lett. 19: 893-897 https://doi.org/10.1023/A:1018397922881
  3. Maras, M., A. De Bruyn, J. Schraml, P. Herdewijn, M. Claeyssens, W. Fiers, and R. Contreras. 1997. Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30. Eur. J. Biochem. 245: 617-625 https://doi.org/10.1111/j.1432-1033.1997.00617.x
  4. Suvajittanont, W., J. McGuire, and M. K. Bothwell. 2001. Adsorption of Thermomonospora fusca E(5) cellulase on silanized silica. Biotechnol. Bioeng. 67: 12-18
  5. Teeri, T. T., P. Lehtovaara, S. Kauppinen, I. Salovuori, and J. K. C. Knowles. 1983. Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51: 43-52 https://doi.org/10.1016/0378-1119(87)90472-0
  6. Wong, W. K. R., C. Curry., R. S. Parekh., S. R. Parekh., M. Wayman., R. W. Davies., D. G Kilburn, and N. Skipper. 1988. Wood hydrolysis by Cellulomonas fimi endoglucanase and exoglucanase coexpressed as secreted enzymes in Saccharomyces cerevisiae. Bio/Technol. 6: 713-719 https://doi.org/10.1038/nbt0688-713
  7. Correa, M. G. and R. P. Tengerd. 1991. Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol. Left. 19: 665-667
  8. Son, M. I. and J. O. Kim, 1998 Optimum condition of cellulose hydrolysis reaction with mixed enzymes of cellulase and ${\beta}$-glucosidase. Kor. J. Biotechnol. Bioeng. 13: 20-25
  9. Mach R. L. and S. Zeilinger. 2003. Regulation of gene expression in industrial fungi, Trichoderma. Appl. Microbiol. Biotechnol. 60: 515-522 https://doi.org/10.1007/s00253-002-1162-x
  10. Barnett, C. C., R. M. Berka, and T. Fowler. 1991. Cloning and amplification of the gene encoding an extracellular ${\beta}$-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates. Bio/Technol. 9: 562-567 https://doi.org/10.1038/nbt0691-562
  11. Nam, S. W., D. K. Chung, and B. H. Chung. 1997. Constitutive expression of Clostridium thermocellum endoglucanase gene in Saccharomyces cerevisiae. Kor. J. Biotechnol. Bioeng. 12: 430-437
  12. Zhang, S., G Lau, and D. B. Wilson. 1995. Characterization of Thermomonospora fusca exoglucanase. Biochemistry 34: 3386-3395 https://doi.org/10.1021/bi00010a030
  13. Irwin, D. C., M. Speaiw, L. P. Walker, and D. B. Wilson. 1993. Activity studies of eight purified cellulase: specificity, synergism, and binding effect. Biotechnol. Bioeng. 42: 1002-1013 https://doi.org/10.1002/bit.260420811
  14. Shin, D. H., J. B. Kim, B. W. Kim, and S. W. Nam. 1998. Expression and secretion of Trichoderma endoglucanase in Saccharomyces cerevisiae. Kor. J. Appl. Microbiol. Biotechnol. 26: 406-412
  15. Kruus, K. and A. Andreacchi. 1995. Product inhibition of the recombinant CeIS, an exoglucanae component of the Clostrdium thermocellum cellulosome. Appl. Microbiol. Biotechnol. 44: 399-404 https://doi.org/10.1007/BF00169935
  16. Wang, T., L. Xiangmei, Y. Qian, Z. Xi, Q. Yinbo, G Peiji, and W. Tianhong. 2005. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol. Eng. 22: 89-94 https://doi.org/10.1016/j.bioeng.2004.10.003
  17. Nam, S. W., K. Yoda, and M. Yamasaki. 1993. Secretion and localization of invertase and inulinase in recombinant Saccharomyces cerevisiae. Biotechnol. Lett. 15: 1049-1504 https://doi.org/10.1007/BF00129936
  18. Hoshino, E., M. Shiroshi, Y. Amano, M. Nomura, and T. Kanda, 1997. Synergistic action of exo-type cellulase in the hydrolysis of cellulase with different crystallinities. J. Ferment. Bioeng. 84: 300-306 https://doi.org/10.1016/S0922-338X(97)89248-3
  19. Medve, J. J. Karlsson, D. Lee, and F. Tjerneld. 1998. Hydrolysis of microcrystalline cellulose by cellobiohydrolae I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzyme. Biotechnol. Bioeng. 59: 621-634 https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.0.CO;2-C
  20. Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168
  21. Vemet, T., D. Dignard, and D. Y. Thomas. 1987. A family of yeast expression vectors containing the phage f1 intergenic region. Gene 52: 225-233 https://doi.org/10.1016/0378-1119(87)90049-7
  22. Wood, T. M. and S. J. Mccrae. 1978. The cellulase Trichoderma koningii: purification and properties of some endoglucanase components with special reference to their action on cellulose when action along in synergism with the cellobiohydrolase. J. Biochem. 171: 61-72 https://doi.org/10.1042/bj1710061
  23. Skiper, N., M. Sutherland, R. W. Davies, D. Kilburn, R. C. Miller, Jr., A. Warren, and R. Womg. 1985. Secretion of a bacterial cellulase by yeast. Science 230: 958-960 https://doi.org/10.1126/science.230.4728.958
  24. Esterbauer, H., W. Steiner, I. Labudova, A. Hermann, and M. Hayn. 1991. Production of Trichoderma cellulase in laboratory and pilot plant. Biores. Technol. 36: 67-76 https://doi.org/10.1016/0960-8524(91)90100-X
  25. Penttila, M., L. Ander, M. Saloheimo, P. Lehtovaara, and J. K. C. Knowles. 1987. Expression of two Trichoderma reesei endoglucanase in yeast Saccharomyces cerevisiae. Yeast 3: 175-185 https://doi.org/10.1002/yea.320030305
  26. Miller, G. L., R. Blum, W. E. Glennon, and A. L. Burton. 1960. Measurement of carboxymethyl cellulase activity. Anal. Biochem. 2: 127-132