Fabrication and Characterization of Zirconia-Alumina Composites by Organic-Inorganic Solution Technique

유기물-무기물 용액법을 이용한 지르코니아-알루미나 복합체의 제조 및 특성

  • Kim, Youn Cheol (Division of Chemical Engineering, Kongju National University) ;
  • Bang, Moon-Soo (Division of Chemical Engineering, Kongju National University) ;
  • Lee, Sang Jin (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 김연철 (공주대학교 화학공학부) ;
  • 방문수 (공주대학교 화학공학부) ;
  • 이상진 (목포대학교 신소재공학과)
  • Received : 2005.02.02
  • Accepted : 2005.08.08
  • Published : 2005.10.10

Abstract

Zirconia-alumina polymer precursor was prepared from zirconium acetylacetonate (ZA). paluminium nitrate (AN), polyethylene glycol (PEG), and ethyl alcohol via an organic-inorganic solution technique. The thermal properties and viscosity of the polymer precursor were measured by differential scanning calorimetry (DSC), thermograbimetric analyzer (TGA), and dynamic viscometer. The vigorous exothermic reaction with volume expansion occurred at $140^{\circ}C$. The volume expansion was caused by abrupt decomposition of the organic group in metal compounds and the metal ions-PEG reaction. The evidences for these reactions were confirmed by FT-IR and $^{13}C$ solid NMR results. The peak intensity at N-O, O-H and C=C decreased with increasing temperature. This indicated that the decomposition of metal compounds and the metal ions-PEG reaction occurred during the vigorous exothermic reaction. At $800^{\circ}C$ for 2 h, the porous powders transformed to the crystalline $ZrO_2-Al_2O_3$ composites.

Acknowledgement

Supported by : 한국과학재단

References

  1. K. Niihara, J. Ceram. Soc. Jpn., 99, 974 (1991) https://doi.org/10.2109/jcersj.99.974
  2. M. Sternitzke, J. Eur. Ceram. Soc., 17, 1061 (1997) https://doi.org/10.1016/S0955-2219(96)00222-1
  3. J. Dusza, P. Sajgalik, and M. Steen, J. Am. Ceram Soc., 82, 3613 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02287.x
  4. S. T. Buljan, J. G. Baldoni, and M. L. Huckabee, Am. Ceram. Soc. Bull., 66, 347 (1987) https://doi.org/10.1111/j.1151-2916.1983.tb10046.x
  5. M. Herrmann, C. Schuber, A. Rendtel, and H. Hubner, J. Am. Ceram Soc., 81, 1095 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02456.x
  6. A. H. Heuer, J. Am. Ceram Soc., 70, 689 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb04865.x
  7. C. Laurent, A. Rousset, P. Bonnefond, D. Oquab, and B. Lavelle, J. Eur. Ceram. Soc., 16, 937 (1996) https://doi.org/10.1016/0955-2219(96)00008-8
  8. A. C. Faro, K. R. Souza, V. Lucia, D. J. Camorim, and M. B. Cardoso, Phys. Chem. Chem. Phys., 5, 1932 (2003) https://doi.org/10.1039/b300899a
  9. D. J. Green, J. Am. Ceram Soc., 65, 610 (1982) https://doi.org/10.1111/j.1151-2916.1982.tb09939.x
  10. J. G. Liu and D. J. Wilkox, J. Mater. Res., 10, 84 (1995) https://doi.org/10.1557/JMR.1995.0084
  11. M. K. Naskar, M. Chatterjee, and N. S. Lakshmi, J. Mater. Sci., 37, 343 (2002) https://doi.org/10.1023/A:1013656413578
  12. C. Li, Y. W. Chen, and T. M. Yen, J. Sol-Gel Sci. Technol., 4, 205 (1995) https://doi.org/10.1007/BF00488375
  13. S. Bhaduri, S. B. Bhaduri, and E. Zhou, J. Mater. Res., 13, 136 (1998)
  14. M. Balasubramanian, S. K. Malhotra, and C. V. Gokulrathnam, J. Mater. Sci., 30, 3515 (1995) https://doi.org/10.1007/BF00349903
  15. R. D. Sisson and B. M. Smyser, NanoStructured Mater., 10, 829 (1998) https://doi.org/10.1016/S0965-9773(98)00119-6
  16. R. N. Viswanath and S. Ramasamy, NanoStructured Mater., 12, 1085 (1999) https://doi.org/10.1016/S0965-9773(99)00304-9
  17. M. Chattezjee, M. K. Naskar, and D. Ganguli, J. Sol-Gel Sci. Technol., 28, 217 (2003) https://doi.org/10.1023/A:1026085217698
  18. S. J. Lee, Y. C. Kim, and J. H. Hwang, J. Ceram. Proc. Res., 5, 223 (2004)
  19. M. P. Pechini, U. S. Patent, 3,330,697 (1967)
  20. S. J. Lee, M. D. Biegalski, and W. M. Kriven, J. Mater. Res., 14, 3001 (1999) https://doi.org/10.1557/JMR.1999.0403
  21. S. J. Lee, E. A. Benson, and W. M. Kriven, J. Am. Ceram Soc., 82, 2049 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02039.x
  22. S. J. Lee and Y. C. Kim, J. Kor. Ceram. Soc., 40, 837 (2003) https://doi.org/10.4191/KCERS.2003.40.9.837
  23. S. J. Lee and W. M. Kriven, J. Am. Ceram. Soc., 81, 2605 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02667.x
  24. S. W. Lu, B. J. Lee, and J. A. Mann, Mater. Left., 43, 102 (2000)
  25. X. Wu, J. Zou, S. Yang, and D. Eang, J. Colloid & Interface Sci., 239, 369 (2001) https://doi.org/10.1006/jcis.2001.7600
  26. J. D. Tsay, T. T. Fang, T. A. Gubiotti, and J. Y. Ying, J. Mater. Sci., 33, 3721 (1998) https://doi.org/10.1023/A:1004636219542
  27. J. J. Clark, T. Takeuchi, N. Ohtori, and D. C. Sinclair, J. Mater. Chem., 9, 83 (1999) https://doi.org/10.1039/a805756g
  28. P. Duran, D. Gutierrez, J. Tartaj, M. A. Banares, and C. Moure, J. Eur. Ceram. Soc., 22, 797 (2002) https://doi.org/10.1016/S0955-2219(01)00392-2
  29. J. J. Koenig, Spectroscopy of Polymers, ACS, 197 (1992)
  30. Z. Chen, K. K. Chawla, and M. Koopman, Mater. Sci. Eng., 367, 24 (2004) https://doi.org/10.1016/j.msea.2003.09.070