Ribosomal Crystallography: Peptide Bond Formation, Chaperone Assistance and Antibiotics Activity

  • Yonath, Ada
  • Received : 2005.08.01
  • Accepted : 2005.08.03
  • Published : 2005.08.31

Abstract

The peptidyl transferase center (PTC) is located in a protein free environment, thus confirming that the ribosome is a ribozyme. This arched void has dimensions suitable for accommodating the 3'ends of the A-and the P-site tRNAs, and is situated within a universal sizable symmetry-related region that connects all ribosomal functional centers involved in amino-acid polymerization. The linkage between the elaborate PTC architecture and the A-site tRNA position revealed that the A-to P-site passage of the tRNA 3'end is performed by a rotatory motion, which leads to stereochemistry suitable for peptide bond formation and for substrate mediated catalysis, thus suggesting that the PTC evolved by genefusion. Adjacent to the PTC is the entrance of the protein exit tunnel, shown to play active roles in sequence-specific gating of nascent chains and in responding to cellular signals. This tunnel also provides a site that may be exploited for local co-translational folding and seems to assist in nascent chain trafficking into the hydrophobic space formed by the first bacterial chaperone, the trigger factor. Many antibiotics target ribosomes. Although the ribosome is highly conserved, subtle sequence and/or conformational variations enable drug selectivity, thus facilitating clinical usage. Comparisons of high-resolution structures of complexes of antibiotics bound to ribosomes from eubacteria resembling pathogens, to an archaeon that shares properties with eukaryotes and to its mutant that allows antibiotics binding, demonstrated the unambiguous difference between mere binding and therapeutical effectiveness. The observed variability in antibiotics inhibitory modes, accompanied by the elucidation of the structural basis to antibiotics mechanism justifies expectations for structural based improved properties of existing compounds as well as for the development of novel drugs.

Keywords

Antibiotics Selectivity;Elongation Arrest;Resistance;Ribosomal Antibiotics;Ribosomal Symmetrical Region;Trigger Factor

References

  1. Auerbach, T., Bashan, A., Harms, J., Schluenzen, F., Zarivach, R., et al. (2002) Antibiotics targeting ribosomes: crystallographic studies. Curr. Drug Targets-Infect Disord. 2, 169-186 https://doi.org/10.2174/1568005023342506
  2. Bashan, A., Agmon, I., Zarivach, R., Schluenzen, F., Harms, J., et al. (2003a) Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol. Cell 11, 91-102 https://doi.org/10.1016/S1097-2765(03)00009-1
  3. Bayfield, M. A., Dahlberg, A. E., Schulmeister, U., Dorner, S., and Barta, A. (2001) A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition. Proc. Natl. Acad. Sci. USA 98, 10096-10101
  4. Berisio, R., Harms, J., Schluenzen, F., Zarivach, R., Hansen, H. A., et al. (2003b) Structural insight into the antibiotic action of telithromycin against resistant mutants. J. Bacteriol. 185, 4276-4279 https://doi.org/10.1128/JB.185.14.4276-4279.2003
  5. Blaha, G., Wilson, D. N., Stoller, G., Fischer, G., Willumeit, R., et al. (2003) Localization of the trigger factor binding site on the ribosomal 50S subunit. J. Mol. Biol. 326, 887-897 https://doi.org/10.1016/S0022-2836(02)01436-5
  6. Blondeau, J. M., DeCarolis, E., Metzler, K. L., and Hansen, G. T. (2002) The macrolides. Expert Opin. Investig. Drugs 11, 189- 215 https://doi.org/10.1517/13543784.11.2.189
  7. Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Morgan- Warren, R. J., Wimberly, B. T., et al. (2000) The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103, 1143- 1154 https://doi.org/10.1016/S0092-8674(00)00216-6
  8. Bukau, B., Deuerling, E., Pfund, C., and Craig, E. A. (2000) Getting newly synthesized proteins into shape. Cell 101, 119-122 https://doi.org/10.1016/S0092-8674(00)80806-5
  9. Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D'Souza, L. M., et al. (2002) The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 https://doi.org/10.1186/1471-2105-3-2
  10. Cooperman, B. S., Wooten, T., Romero, D. P., and Traut, R. R. (1995) Histidine 229 in protein L2 is apparently essential for 50S peptidyl transferase activity. Biochem. Cell. Biol. 73, 1087-1094
  11. Dorner, S., Polacek, N., Schulmeister, U., Panuschka, C., and Barta, A. (2002) Molecular aspects of the ribosomal peptidyl transferase. Biochem. Soc. Trans. 30, 1131-1136 https://doi.org/10.1042/BST0301131
  12. Frydman, J. (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603-647 https://doi.org/10.1146/annurev.biochem.70.1.603
  13. Gottesman, M. E. and Hendrickson, W. A. (2000) Protein folding and unfolding by Escherichia coli chaperones and chaperonins. Curr. Opin. Microbiol. 3, 197-202 https://doi.org/10.1016/S1369-5274(00)00075-8
  14. Hansen, L. H., Mauvais, P., and Douthwaite, S. (1999) The macrolide- ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol. Microbiol. 31, 623-631 https://doi.org/10.1046/j.1365-2958.1999.01202.x
  15. Hansen, J. L., Moore, P. B., and Steitz, T. A. (2003) Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J. Mol. Biol. 330, 1061-1075 https://doi.org/10.1016/S0022-2836(03)00668-5
  16. Hardesty, B., Kudlicki, W., Odom, O. W., Zhang, T., McCarthy, D., et al. (1995) Cotranslational folding of nascent proteins on Escherichia coli ribosomes. Biochem. Cell. Biol. 73, 1199- 1207
  17. Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., et al. (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679-688 https://doi.org/10.1016/S0092-8674(01)00546-3
  18. Jencks, W. P. (1969, reissued 1987) Catalysis in Chemistry and Enzymology. NY: McGraw-Hill, Mineola, Dover Publications Inc
  19. Ludlam, A. V., Moore, B. A., and Xu, Z. (2004) The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae. Proc. Natl. Acad. Sci. USA 101, 13436-13441
  20. Monro, R. E., Celma, M. L., and Vazquez, D. (1969) Action of sparsomycin on ribosome-catalysed peptidyl transfer. Nature 222, 356-358 https://doi.org/10.1038/222356a0
  21. Nierhaus, K. H., Schulze, H., and Cooperman, B. S. (1980) Molecular mechanisms of the ribosomal peptidyl transferase center. Biochem. Int. 1, 185-192
  22. Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920-930 https://doi.org/10.1126/science.289.5481.920
  23. Nitta, I., Kamada, Y., Noda, H., Ueda, T., and Watanabe, K. (1998) Reconstitution of peptide bond formation with Escherichia coli 23S ribosomal RNA domains. Science 281, 666-669 https://doi.org/10.1126/science.281.5377.666
  24. Pfister, P., Jenni, S., Poehlsgaard, J., Thomas, A., Douthwaite, S., et al. (2004) The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. J. Mol. Biol. 342, 1569-1581 https://doi.org/10.1016/j.jmb.2004.07.095
  25. Pfister, P., Corti, N., Hobbie, S., Bruell, C., Zarivach, R., et al. (2005) 23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A $\rightarrow$ G. Proc. Natl. Acad. Sci. USA 102, 5180-5185
  26. Pioletti, M., Schluenzen, F., Harms, J., Zarivach, R., Gluehmann, M., et al. (2001) Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 20, 1829-1839 https://doi.org/10.1093/emboj/20.8.1829
  27. Porse, B. T., Kirillov, S. V., Awayez, M. J., Ottenheijm, H. C., and Garrett, R. A. (1999) Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosometRNA complexes. Proc. Natl. Acad. Sci. USA 96, 9003-9008
  28. Poulsen, S. M., Kofoed, C., and Vester, B. (2000) Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. J. Mol. Biol. 304, 471-481 https://doi.org/10.1006/jmbi.2000.4229
  29. Rospert, S. (2004) Ribosome function: governing the fate of a nascent polypeptide. Curr. Biol. 14, R386-388 https://doi.org/10.1016/j.cub.2004.02.036
  30. Schluenzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., et al. (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814-821 https://doi.org/10.1038/35101544
  31. Stroud, R. M. and Walter, P. (1999) Signal sequence recognition and protein targeting. Curr. Opin. Struct. Biol. 9, 754-759 https://doi.org/10.1016/S0959-440X(99)00040-8
  32. Thirumalai, D. and Lorimer, G. H. (2001) Chaperonin-mediated protein folding. Annu. Rev. Biophys. Biomol. Struct. 30, 245- 269 https://doi.org/10.1146/annurev.biophys.30.1.245
  33. Tu, D., Blaha, G., Moore, P. B., and Steitz, T. A. (2005) Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121, 257-270 https://doi.org/10.1016/j.cell.2005.02.005
  34. Yonath, A. (2003b) Ribosomal tolerance and peptide bond formation. Biol. Chem. 384, 1411-1419 https://doi.org/10.1515/BC.2003.156
  35. Yonath, A., Leonard, K. R., and Wittmann, H. G. (1987) A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236, 813-816 https://doi.org/10.1126/science.3576200
  36. Youngman, E. M., Brunelle, J. L., Kochaniak, A. B., and Green, R. (2004) The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589-599 https://doi.org/10.1016/S0092-8674(04)00411-8
  37. Zarivach, R., Bashan, A., Berisio, R., Harms, J., Auerbach, T., et al. (2004) Functional aspects of ribosomal architecture: symmetry, chirality and regulation. J. Phys. Org. Chem. 17, 901-912 https://doi.org/10.1002/poc.831
  38. Mankin, A. S. and Garrett, R. A. (1991) Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeon Halobacterium halobium. J. Bacteriol. 173, 3559-3563
  39. Moore, P. B. and Steitz, T. A. (2003) After the ribosome structures: How does peptidyl transferase work? RNA 9, 155-159 https://doi.org/10.1261/rna.2127103
  40. Nakatogawa, H. and Ito, K. (2002) The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629-636 https://doi.org/10.1016/S0092-8674(02)00649-9
  41. Vester, B. and Douthwaite, S. (2001) Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother. 45, 1-12 https://doi.org/10.1128/AAC.45.1.1-12.2001
  42. Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T., et al. (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340-348 https://doi.org/10.1038/35030019
  43. Hartl, F. U. and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858 https://doi.org/10.1126/science.1068408
  44. Sievers, A., Beringer, M., Rodnina, M. V., and Wolfenden, R. (2004) The ribosome as an entropy trap. Proc. Natl. Acad. Sci. USA 101, 7897-7901
  45. Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905-920 https://doi.org/10.1126/science.289.5481.905
  46. Green, R., Samaha, R. R., and Noller, H. F. (1997) Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. J. Mol. Biol. 266, 40-50 https://doi.org/10.1006/jmbi.1996.0780
  47. Gregory, S. T., Carr, J. F., Rodriguez-Correa, D., and Dahlberg, A. E. (2005) Mutational analysis of 16S and 23S rRNA Genes of Thermus thermophilus. J. Bacteriol. 187, 4804-4812
  48. Gaynor, M. and Mankin, A. S. (2003) Macrolide antibiotics: binding site, mechanism of action, resistance. Curr. Top Med. Chem. 3, 949-961 https://doi.org/10.2174/1568026033452159
  49. Maier, T., Ferbitz, L., Deuerling, E., and Ban, N. (2005) A cradle for new proteins: trigger factor at the ribosome. Curr. Opin. Struct. Biol. 15, 204-212 https://doi.org/10.1016/j.sbi.2005.03.005
  50. Unge, J., berg, A., Al-Kharadaghi, S., Nikulin, A., Nikonov, S., et al. (1998) The crystal structure of ribosomal protein L22 from Thermus thermophilus: insights into the mechanism of erythromycin resistance. Structure 6, 1577-1586 https://doi.org/10.1016/S0969-2126(98)00155-5
  51. Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Jr., Morgan- Warren, R. J., Carter, A. P., et al. (2000) Structure of the 30S ribosomal subunit. Nature 407, 327-339 https://doi.org/10.1038/35030006
  52. Bashan, A. and Yonath, A. (2005) Ribosome crystallography: catalysis and evolution of peptide-bond formation, nascent chain elongation and its co-translational folding. Biochem. Soc. Trans. 33, 488-492 https://doi.org/10.1042/BST0330488
  53. Davydova, N., Streltsov, V., Wilce, M., Liljas, A., and Garber, M. (2002) L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin. J. Mol. Biol. 322, 635- 644 https://doi.org/10.1016/S0022-2836(02)00772-6
  54. Eisenstein, M., Hardesty, B., Odom, O. W., Kudlicki, W., Kramer, G., et al. (1994) Modeling and experimental study of the progression of nascent protein in ribosomes; in Supramolecular Structure and Function, Pifat, G. (ed.), pp. 213-246, Rehovot: Balaban Press
  55. Schluenzen, F., Harms, J. M., Franceschi, F., Hansen, H. A., Bartels, H., et al. (2003) Structural basis for the antibiotic activity of ketolides and azalides. Structure 11, 329-338 https://doi.org/10.1016/S0969-2126(03)00022-4
  56. White, S. H. and von Heijne, G. (2004) The machinery of membrane protein assembly. Curr. Opin. Struct. Biol. 14, 397-404 https://doi.org/10.1016/j.sbi.2004.07.003
  57. Yusupov, M. M., Yusupova, G. Z., Baucom, A., Lieberman, K., Earnest, T. N., et al. (2001) Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883-896 https://doi.org/10.1126/science.1060089
  58. Gale, E. F., Cundliffe, E., Reynolds, P. E., Richmond, M. H., and Waring, M. J. (1981) The molecular basis of antibiotic action, pp. 419-439, John Wiley & Sons, London
  59. Hansen, J. L., Ippolito, J. A., Ban, N., Nissen, P., Moore, P. B., et al. (2002b) The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10, 117-128 https://doi.org/10.1016/S1097-2765(02)00570-1
  60. Kristensen, O. and Gajhede, M. (2003) Chaperone binding at the ribosomal exit tunnel. Structure 11, 1547-1556 https://doi.org/10.1016/j.str.2003.11.003
  61. Pereyre, S., Gonzalez, P., De Barbeyrac, B., Darnige, A., Renaudin, H., et al. (2002) Mutations in 23S rRNA account for intrinsic resistance to macrolides in Mycoplasma hominis and Mycoplasma fermentans and for acquired resistance to macrolides in M. hominis. Antimicrob Agents Chemother. 46, 3142-3150 https://doi.org/10.1128/AAC.46.10.3142-3150.2002
  62. Spahn, C. M. and Prescott, C. D. (1996) Throwing a spanner in the works: antibiotics and the translation apparatus. J. Mol. Med. 74, 423-439 https://doi.org/10.1007/BF00217518
  63. Weinger, J. S., Parnell, K. M., Dorner, S., Green, R., and Strobel, S. A. (2004) Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat. Struct. Mol. Biol. 11, 1101-1106 https://doi.org/10.1038/nsmb841
  64. Yonath, A. (2002) The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. Annu. Rev. Biophys. Biomol. Struct. 31, 257-273 https://doi.org/10.1146/annurev.biophys.31.082901.134439
  65. Gilbert, R. J., Fucini, P., Connell, S., Fuller, S. D., Nierhaus, K. H., et al. (2004) Three-Dimensional Structures of Translating Ribosomes by Cryo-EM. Mol. Cell 14, 57-66 https://doi.org/10.1016/S1097-2765(04)00163-7
  66. Thompson, J., Kim, D. F., O'Connor, M., Lieberman, K. R., Bayfield, M. A., et al. (2001) Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Proc. Natl. Acad. Sci. USA 98, 9002-
  67. Bashan, A., Zarivach, R., Schluenzen, F., Agmon, I., Harms, J., et al. (2003b) Ribosomal crystallography: peptide bond formation and its inhibition. Biopolymers 70, 19-41 https://doi.org/10.1002/bip.10412
  68. Tan, G. T., DeBlasio, A., and Mankin, A. S. (1996) Mutations in the peptidyl transferase center of 23 S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation. J. Mol. Biol. 261, 222-230 https://doi.org/10.1006/jmbi.1996.0454
  69. Gong, F. and Yanofsky, C. (2002) Instruction of translating ribosome by nascent Peptide. Science 297, 1864-1867 https://doi.org/10.1126/science.1073997
  70. Sigmund, C. D., Ettayebi, M., and Morgan, E. A. (1984) Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 12, 4653-4663 https://doi.org/10.1093/nar/12.11.4653
  71. Amit, M., Berisio, R., Baram, D., Harms, J., Bashan, A., et al. (2005) A crevice adjoining the ribosome tunnel: hints for cotranslational folding. FEBS Lett. 579, 3207-3213 https://doi.org/10.1016/j.febslet.2005.03.023
  72. Tenson, T. and Ehrenberg, M. (2002) Regulatory nascent peptides in the ribosomal tunnel. Cell 108, 591-594 https://doi.org/10.1016/S0092-8674(02)00669-4
  73. Yonath, A. and Bashan, A. (2004) Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. Annu. Rev. Microbiol. 58, 233-251 https://doi.org/10.1146/annurev.micro.58.030603.123822
  74. Barta, A., Dorner, S., and Polacek, N. (2001) Mechanism of ribosomal peptide bond formation. Science 291, 203 https://doi.org/10.1126/science.291.5502.203a
  75. Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A., and Bukau, B. (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400, 693-696 https://doi.org/10.1038/23301
  76. Katz, L. and Ashley, G. W. (2005) Translation and protein synthesis: macrolides. Chem. Rev. 105, 499-528 https://doi.org/10.1021/cr030107f
  77. Kim, D. F. and Green, R. (1999) Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4, 859-864 https://doi.org/10.1016/S1097-2765(00)80395-0
  78. Kramer, G., Rauch, T., Rist, W., Vorderwulbecke, S., Patzelt, H., et al. (2002) L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171-174 https://doi.org/10.1038/nature01047
  79. Milligan, R. A. and Unwin, P. N. (1986) Location of exit channel for nascent protein in 80S ribosome. Nature 319, 693-695 https://doi.org/10.1038/319693a0
  80. Schluenzen, F., Pyetan, E., Fucini, P., Yonath, A., and Harms, J. (2004) Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol. Microbiol. 54, 1287-1294 https://doi.org/10.1111/j.1365-2958.2004.04346.x
  81. Thompson, J. and Dahlberg, A. E. (2004) Testing the conservation of the translational machinery over evolution in diverse environments: assaying Thermus thermophilus ribosomes and initiation factors in a coupled transcription-translation system from Escherichia coli. Nucleic Acids Res. 32, 5954-5961 https://doi.org/10.1093/nar/gkh925
  82. Vazquez, D. (1979) Inhibitors of protein biosynthesis. Mol. Biol. Biochem. Biophys. 30, 1-312
  83. Etchells, S. A. and Hartl, F. U. (2004) The dynamic tunnel. Nat. Struct. Mol. Biol. 11, 391-392 https://doi.org/10.1038/nsmb0504-391
  84. Noller, H. F., Hoffarth, V., and Zimniak, L. (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256, 1416-1419 https://doi.org/10.1126/science.1604315
  85. Woolhead, C. A., McCormick, P. J., and Johnson, A. E. (2004) Nascent membrane and secretory proteins differ in FRETdetected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725-736 https://doi.org/10.1016/S0092-8674(04)00169-2
  86. Agmon, I., Bashan, A., Zarivach, R., and Yonath, A. (2005) Symmetry at the active site of the ribosome: structure and functional implications. Biol. Chem. (in press)
  87. Auerbach, T., Bashan, A., and Yonath, A. (2004) Ribosomal antibiotics: structural basis for resistance, synergism and selectivity. Trends Biotechnol. 22, 570-576 https://doi.org/10.1016/j.tibtech.2004.09.006
  88. Baram, D., Pyetan, E., Sittner, A., Auerbach-Nevo, T., Bashan, A., et al. (2005) Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome revealed its chaperone action. Proc. Natl. Acad. Sci. USA 102, 12017-12022
  89. Bryskier, A., Butzler, J. P., Neu, H. C., and Tulkens, P. M. (1993) Macrolides-Chemistry, Pharmacology, and Clinical Uses. Oxford
  90. Courvalin, P., Ounissi, H., and Arthur, M. (1985) Multiplicity of macrolide-lincosamide-streptogramin antibiotic resistance determinants. J. Antimicrob. Chemother. 16, 91-100
  91. Knowles, D. J., Foloppe, N., Matassova, N. B., and Murchie, A. I. (2002) The bacterial ribosome, a promising focus for structurebased drug design. Curr. Opin. Pharmacol. 2, 501-506 https://doi.org/10.1016/S1471-4892(02)00205-9
  92. Polacek, N., Gomez, M. J., Ito, K., Xiong, L., Nakamura, Y., et al. (2003) The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol. Cell 11, 103-112 https://doi.org/10.1016/S1097-2765(02)00825-0
  93. Yonath, A. (2005) Antibiotics targeting ribosomes: resistance, selectivity, synergism, and cellular regulation. Annu. Rev. Biochem. 74, 649-679 https://doi.org/10.1146/annurev.biochem.74.082803.133130
  94. Bocchetta, M., Xiong, L., and Mankin, A. S. (1998) 23S rRNA positions essential for tRNA binding in ribosomal functional sites. Proc. Natl. Acad. Sci. USA 95, 3525-3530
  95. Walter, P. and Johnson, A. E. (1994) Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell. Biol. 10, 87-119 https://doi.org/10.1146/annurev.cb.10.110194.000511
  96. Goldberg, I. H. and Mitsugi, K. (1966) Sparsomycin, an inhibitor of aminoacyl transfer to polypeptide. Biochem. Biophys. Res. Commun. 23, 453-459 https://doi.org/10.1016/0006-291X(66)90749-2
  97. Schmeing, T. M., Seila, A. C., Hansen, J. L., Freeborn, B., Soukup, J. K., et al. (2002) A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nat. Struct. Biol. 9, 225-230
  98. Shevack, A., Gewitz, H. S., Hennemann, B., Yonath, A., and Wittmann, H. G. (1985) Characterization and crystallization of ribosomal particles from Halobacterium marismortui. FEBS Lett. 184, 68-71 https://doi.org/10.1016/0014-5793(85)80655-4
  99. Agmon, I., Bashan, A., Zarivach, R., and Yonath, A. (2005) Symmetry at the active site of the ribosome: structure and functional implications. Biol. Chem. (in press)
  100. Baram, D. and Yonath, A. (2005) From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects. FEBS Lett. 579, 948-954 https://doi.org/10.1016/j.febslet.2004.11.063
  101. Johnson, A. E. (2005) The co-translational folding and interactions of nascent protein chains: a new approach using fluorescence resonance energy transfer. FEBS Lett. 579, 916-920 https://doi.org/10.1016/j.febslet.2004.11.046
  102. Wittmann, H. G., Stoffler, G., Apirion, D., Rosen, L., Tanaka, K., et al. (1973) Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol. Gen. Genet. 127, 175-189 https://doi.org/10.1007/BF00333665
  103. Yonath, A. (2003a) Structural insight into functional aspects of ribosomal RNA targeting. Chem. Biol. Chemistry 4, 1008-1017
  104. Gregory, S. T. and Dahlberg, A. E. (2004) Peptide bond formation is all about proximity. Nat. Struct. Mol. Biol. 11, 586-587 https://doi.org/10.1038/nsmb0704-586
  105. Weisblum, B. (1995) Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 39, 577-585
  106. Poehlsgaard, J. and Douthwaite, S. (2003) Macrolide antibiotic interaction and resistance on the bacterial ribosome. Curr. Opin. Invest. Drugs 4, 140-148
  107. Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2003) Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA 9, 1345-1352 https://doi.org/10.1261/rna.5120503
  108. Agmon, I., Amit, M., Auerbach, T., Bashan, A., Baram, D., et al. (2004) Ribosomal crystallography: a flexible nucleotide anchoring tRNA translocation facilitates peptide bond formation, chirality discrimination and antibiotics synergism. FEBS Lett. 567, 20-26 https://doi.org/10.1016/j.febslet.2004.03.065
  109. Gabashvili, I. S., Gregory, S. T., Valle, M., Grassucci, R., Worbs, M., et al. (2001) The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol. Cell 8, 181-188 https://doi.org/10.1016/S1097-2765(01)00293-3
  110. Hansen, J. L., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2002a) Structural insights into peptide bond formation. Proc. Natl. Acad. Sci. USA 99, 11670-11675
  111. Harms, J., Schluenzen, F., Fucini, P., Bartels, H., and Yonath, A. (2004) Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol. 2, 1-10 https://doi.org/10.1186/1741-7007-2-1
  112. Sanz, J. L., Marin, I. R. A., and Urena, D. (1993) Functional analysis of seven ribosomal systems from extreme halophilic archaea. Can. J. Microbiol. 35, 311-317
  113. Berisio, R., Schluenzen, F., Harms, J., Bashan, A., Auerbach, T., et al. (2003a) Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat. Struct. Biol. 10, 366-370 https://doi.org/10.1038/nsb915
  114. Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E., et al. (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590-596 https://doi.org/10.1038/nature02899
  115. Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., et al. (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102, 615-623 https://doi.org/10.1016/S0092-8674(00)00084-2
  116. Xiong, L., Shah, S., Mauvais, P., and Mankin, A. S. (1999) A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Mol. Microbiol. 31, 633-639 https://doi.org/10.1046/j.1365-2958.1999.01203.x

Acknowledgement

Supported by : The US National Inst. of Health