DOI QR코드

DOI QR Code

Combinatorial Solid Phase Peptide Synthesis and Bioassays

  • Shin, Dong-Sik (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Do-Hyun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Chung, Woo-Jae (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Yoon-Sik (School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2005.09.30

Abstract

Solid phase peptide synthesis method, which was introduced by Merrifield in 1963, has spawned the concept of combinatorial chemistry. In this review, we summarize the present technologies of solid phase peptide synthesis (SPPS) that are related to combinatorial chemistry. The conventional methods of peptide library synthesis on polymer support are parallel synthesis, split and mix synthesis and reagent mixture synthesis. Combining surface chemistry with the recent technology of microelectronic semiconductor fabrication system, the peptide microarray synthesis methods on a planar solid support are developed, which leads to spatially addressable peptide library. There are two kinds of peptide microarray synthesis methodologies: pre-synthesized peptide immobilization onto a glass or membrane substrate and in situ peptide synthesis by a photolithography or the SPOT method. This review also discusses the application of peptide libraries for high-throughput bioassays, for example, peptide ligand screening for antibody or cell signaling, enzyme substrate and inhibitor screening as well as other applications.

References

  1. Buss, H., Dörrie, A., Schmitz, M. L., Frank, R., Livingstone, M., Resch, K. and Kracht, M. (2004) Phosphorylation of serine 468 by GSK-3 beta negatively regulates basal p65 NF-kappa B activity. J. Biol. Chem. 279, 49571-49574 https://doi.org/10.1074/jbc.C400442200
  2. Chen, B., Bestetti, G., Day, R. M. and Turner, A. P. F. (1998) The synthesis and screening of a combinatorial peptide library for affinity ligands for glycosylated haemoglobin. Biosens. Bioelectron. 13, 779-785 https://doi.org/10.1016/S0956-5663(98)00042-6
  3. Christensen, C., Groth, T., Schiodt, C. B., Foged, N. T. and Meldal, M. (2003) Automated sorting of beads from a 'onebead-two-compounds' combinatorial library of metalloproteinase inhibitors. QSAR Comb. Sci. 22, 737-744 https://doi.org/10.1002/qsar.200320005
  4. Copeland, G. T. and Miller, S. J. (2001) Selection of enantioselective acyl transfer catalysts from a pooled peptide library through a fluorescence-based activity assay: an approach to kinetic resolution of secondary alcohols of broad structural scope. J. Am. Chem. Soc. 123, 6496-6502 https://doi.org/10.1021/ja0108584
  5. Frank, R. (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48, 9217-9232 https://doi.org/10.1016/S0040-4020(01)85612-X
  6. Geysen, H. M., Meloen, R. H. and Barteling, S. J. (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 81, 3998-4002
  7. Hoffmann, S. and Frank, R. (1994) A new safety-catch peptideresin linkage for the direct release of peptides into aqueous buffers. Tetrahedron Lett. 35, 7763-7766 https://doi.org/10.1016/0040-4039(94)80112-6
  8. Houseman, B. T., Huh, J. H., Kron, S. J. and Mrksich, M. (2002) Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270-274 https://doi.org/10.1038/nbt0302-270
  9. Kramer, A. and Schneider-Mergener, J. (1998) Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods Mol. Biol. 87, 25-39
  10. Lau, D. H., Guo, L., Liu, R., Song, A., Shao C. and Lam, K. S. (2002) Identifying peptide ligands for cell surface receptors using cell-growth-on-bead assay and one-bead one-compound combinatorial library. Biotechnol. Lett. 24, 497-500 https://doi.org/10.1023/A:1014538322185
  11. Licha, K., Bhargava, S., Rheinländer, C., Becker, A., Schneider-Mergener, J. and Volkmer-Engert, R. (2000) Highly parallel nano-synthesis of cleavable peptide-dye conjugates on cellulose membranes. Tetrahedron Lett. 41, 1711-1715 https://doi.org/10.1016/S0040-4039(00)00019-8
  12. Martin, S. E. and Peterson, B. (2002) A colorimetric enzymelinked on-bead assay for identification of synthetic substrates of protein tyrosine kinases. J. Peptide Sci. 8, 227-233 https://doi.org/10.1002/psc.376
  13. Pellegrini, M. C., Liang, H., Mandiyan, S., Wang, K., Yuryev, A., Vlattas, I., Sytwu, T., Li, Y.-C. and Wennogle, L. P. (1998) Mapping the subsite preferences of protein tyrosine phosphatase PTP-1B using combinatorial chemistry approaches. Biochemistry 37, 15598-15606 https://doi.org/10.1021/bi981427+
  14. Pellois, J. P., Zhou, X., Srivannavit, O., Zhou, T., Gulari, E. and Gao, X. (2002) Individually addressable parallel peptide synthesis on microchips. Nat. Biotetechnol. 20, 922-926 https://doi.org/10.1038/nbt723
  15. Wang, P., Fu, H., Snavley, D. F., Freitas, M. A. and Pei, D. (2002) Screening combinatorial libraries by mass spectrometry. 2. identification of optimal substrates of protein tyrosine phosphatase SHP-1. Biochemistry 41, 6202-6210 https://doi.org/10.1021/bi025591f
  16. Wenschuh, H., Volkmer-Engert, R., Schmidt, M., Schulz, M., Schneider-Mergener, J. and Reineke, U. (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 55, 188-206 https://doi.org/10.1002/1097-0282(2000)55:3<188::AID-BIP20>3.0.CO;2-T
  17. Srivannavit, O., Gulari, M., Gulari, E., LeProust, E., Pellois, J. P., Gao. X. and Zhou, X. (2004) Design and fabrication of microwell array chips for a solution-based, photogenerated acid-catalyzed parallel oligonucleotide DNA synthesis. Sens. Actuators A. 116, 150-160 https://doi.org/10.1016/j.sna.2004.04.025
  18. Ying, L., Liu, R., Zhang, J., Lam, K., Lebrilla, C. B. and Gervay-Hague, J. (2005) A topologically segregated one-bead-onecompound combinatorial glycopeptide library for identification of lectin ligands. J. Comb. Chem. 7, 372-384 https://doi.org/10.1021/cc049836e
  19. Yu, Z., Tu, J. and Chu, Y.-H. (1997) Confirmation of crossreactivity between lyme antibody H9724 and human heat shock protein 60 by a combinatorial approach. Anal. Chem. 69, 4515-4518 https://doi.org/10.1021/ac9708405
  20. Wang, X., Peng, L., Liu, R., Gill, S. S. and Lam, K. S. (2005) Partial Alloc-deprotection approach for ladder synthesis of 'one-bead one-compound' combinatorial libraries. J. Comb. Chem. 7, 197-209 https://doi.org/10.1021/cc049887b
  21. Diks, S. H., Kok, K., O'Toole, T., Hommes, D. W., van Dijken, P., Moore, J. and Peppelenbosch, M. P. (2004) Kinome profiling for studying lipopolysaccharide signal transduction in human peripheral blood mononuclear cells. J. Biol. Chem. 279, 49206-49213 https://doi.org/10.1074/jbc.M405028200
  22. Verdoliva, A., Marasco, D., De Capua, A., Saporito, A., Bellofiore, P., Manfredi, V., Fattorusso, R., Pedone, C. and Ruvo, M. (2005) A new ligand for immunoglobulin G subdomains by screening of a synthetic peptide library. ChemBioChem. 6, 1242-1253 https://doi.org/10.1002/cbic.200400368
  23. Baleux, F., Calas, B. and Mery, J. (1986) Glycolamidic ester groups as labile linkage in solid phase peptide synthesis: use with Fmoc-protected amino acids. Int. J. Pept. Protein Res. 28, 22-28 https://doi.org/10.1111/j.1399-3011.1986.tb03226.x
  24. Falsey, J. R., Renil, M., Park, S., Li, S. and Lam, K.S. (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjugate Chem. 12, 346-353 https://doi.org/10.1021/bc000141q
  25. Merrifield, R. B. (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149-2154 https://doi.org/10.1021/ja00897a025
  26. Ast, T., Heine, N., Germeroth, L., Schneider-Mergener, J. and Wenschuh, H. (1999) Efficient parallel synthesis of peptomers and peptoids on membranes. Tetrahedron Lett. 40, 4317-4318 https://doi.org/10.1016/S0040-4039(99)00775-3
  27. Pellois, J. P., Wang, W. and Gao, X. (2000) Peptide synthesis based on t-Boc chemistry and solution photogenerated acids. J. Comb. Chem. 2, 355-360 https://doi.org/10.1021/cc0000139
  28. Reimer, U., Reineke, U. and Schneider-Mergener, J. (2002) Peptide arrays: from macro to micro. Curr. Opin. Biotechnol. 13, 315-320 https://doi.org/10.1016/S0958-1669(02)00339-7
  29. Barnes, C. A. S. and Clemmer, D. E. (2001) Assessment of purity and screening of peptide libraries by nested ion mobility-TOFMS: identification of RNase S-protein binders. Anal. Chem. 73, 424-433 https://doi.org/10.1021/ac001209y
  30. Luo, K., Zhou, P. and Lodish, H. F. (1995) The specificity of the transforming growth-factor-beta receptor kinases determined by a spatially addressable peptide library. Proc. Natl. Acad. Sci. USA 92, 11761-11765
  31. Holmes, C. P., Adams, C. L., Kochersperger, L. M., Mortensen, R. B. and Aldwin, L. A. (1995) The use of light-directed combinatorial peptide synthesis in epitope mapping. Biopolymers (Peptide Science). 37, 199-211 https://doi.org/10.1002/bip.360370304
  32. Graven, A., St. Hilaire, P. M., Sanderson, S. J., Mottram, J. C., Coombs, G. H. and Meldal, M. (2001) Combinatorial library of peptide isosters based on Diels-Alder reactions: identification of novel inhibitors against a recombinant cysteine protease from Leishmania mexicana. J. Comb. Chem. 3, 441-452 https://doi.org/10.1021/cc0001102
  33. Kramer, A., Reineke, U., Dong, L., Hoffmann, B., Hoffmüller, U., Winkler, D., Vlkmer-Engert. R. and Schneider-Mergener, J. (1999) Spot synthesis: observation and optimizations. J. Peptide Res. 54, 319-327 https://doi.org/10.1034/j.1399-3011.1999.00108.x
  34. Schutkowski, M., Reimer, U., Panse, S., Dong, L., Lizcano, M., Alessi, D.R. and Schneider-Mergener, J. (2004) High-content peptide microarrays for deciphering kinase specificity and biology. Angew. Chem. Int. Ed. 43, 2671-2674 https://doi.org/10.1002/anie.200453900
  35. Lam, K. S., Wu, J. Z. and Lou, Q. (1995) Identification and characterization of a novel synthetic peptide substrate specific for Src-family protein tyrosine kinases. Int. J. Peptide Prot. Res. 45, 587-592 https://doi.org/10.1111/j.1399-3011.1995.tb01323.x
  36. Lesaicherre, M.-L., Uttamchandani, M., Chen, G. Y. J. and Yao, S. Q. (2002b) Developing site-specific immobilization strategies of peptides in a microarray. Bioorg. Med. Chem. Lett. 12, 2079-2083 https://doi.org/10.1016/S0960-894X(02)00379-7
  37. Rosse, G., Kueng, E., Page, M. G. P., Schauer-Vukasinovic, V., Giller, T., Lahm, H.-W., Hunziker, P. and Schlatter, D. (2000) Rapid identification of substrates for novel proteases using a combinatorial peptide library. J. Comb. Chem. 2, 461-466 https://doi.org/10.1021/cc000019y
  38. Uttamchandani, M., Chan, E. W. S., Chen, G. Y. J. and Yao, S. Q. (2003) Combinatorial peptide microarrays for the rapid determination of kinase specificity. Bioorg. Med. Chem. Lett. 13, 2997-3000 https://doi.org/10.1016/S0960-894X(03)00633-4
  39. Lizcano, J. M., Deak, M., Morrice, N., Kieloch, A., Hastie, C. J., Dong, L., Schutkowski, M., Remier, U. and Alessi, D.R. (2002) Molecular basis for the substrate specificity of NIMArelated kinase-6 (NEK6) - Evidence that NEK6 does not phosphorylate the hydrophobic motif of ribosomal S6 protein kinase and serum- and glucocorticoid-induced protein kinase in vivo. J. Biol. Chem. 277, 27839-27849 https://doi.org/10.1074/jbc.M202042200
  40. Wegner, G. J., Lee, H. J. and Corn, R. M. (2002) Characterization and optimization of peptide arrays for the study of epitopeantibody interactions using surface plasmon resonance imaging. Anal. Chem. 74, 5161-5168 https://doi.org/10.1021/ac025922u
  41. Panse, S., Dong, L., Burian, A., Carus, R., Schutkowski, M., Reimer, U. and Schneider-Mergener, J. (2004) Profiling of generic anti-phosphopeptide antibodies and kinases with peptide microarrays using radioactive and fluorescence-based assays. Mol. Divers. 8, 291-299 https://doi.org/10.1023/B:MODI.0000036240.39384.eb
  42. Southern, E. M. (1988) Analysing polynu cleotide sequences. Great Britain Patent Application GB 8810400.5
  43. Lee, K.-N., Shin, D.-S., Lee, Y.-S. and Kim, Y.-K. (2003) Micromirror array for protein micro array fabrication. J. Micromech. Microeng. 13, 474-481 https://doi.org/10.1088/0960-1317/13/3/318
  44. LeProust, E., Pellois, J. P., Yu, P., Zhang, H. and Gao, X. (2000) Peptide synthesis based on $\tau$-Boc chemistry and solution photogenerated acids. J. Comb. Chem. 2, 349-354 https://doi.org/10.1021/cc000009x
  45. Lou, Q., Leftwich, M. E. and Lam, K. S. (1996) Identification of GIYWHHY as a novel peptide substrate for human $p{60}^c-src$ protein tyrosine kinase. Bioorg. Med. Chem. 4, 677-682 https://doi.org/10.1016/0968-0896(96)00063-6
  46. Heine, N., Germeroth, L., Schneider-Mergener, J. and Wenschuh, H. (2001) A modular approach to the spot synthesis of 1,2,5-trisubstituted hydantoins on cellulose membranes. Tetrahedron Lett. 42, 227-230 https://doi.org/10.1016/S0040-4039(00)01960-2
  47. MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760-1763
  48. Molina, F., Laune, D., Gougat, C., Pau, B. and Granier, C. (1996) Improved performance of spot multiple peptide synthesis. Pept. Res. 9, 151-155
  49. Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P. and Fodor, S. P. A. (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022-5026
  50. Takahashi, M., Nokihara, K. and Mihara, H. (2003) Construction of a protein-detection system using a loop peptide library with a fluorescence label. Chem. Biol. 10, 53-60 https://doi.org/10.1016/S1074-5521(02)00308-3
  51. Zang, X., Yu, Z. and Chu, Y.-H. (1998) Tight-binding streptavidin ligands from a cyclic peptide library. Bioorg. Med. Chem. Lett. 8, 2327-2332 https://doi.org/10.1016/S0960-894X(98)00421-1
  52. Lesaicherre, M.-L., Uttamchandani, M., Chen, G.. Y. J. and Yao, S. Q. (2002a) Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg. Med. Chem. Lett. 12, 2085-2088 https://doi.org/10.1016/S0960-894X(02)00378-5
  53. Volkmer-Engert, R., Hoffmann, B. and Schneider-Mergener, J. (1997) Stable attachment of the HMB-linker to continuous cellulose membranes for parallel solid phase spot synthesis. Tetrahedron Lett. 38, 1029-1032 https://doi.org/10.1016/S0040-4039(96)02508-7
  54. Houghten, R. A. (1984) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigenantibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82, 5131-5135
  55. Lingard, I., Bhalay, G. and Bradley, M. (2003) Dyad beads and the combinatorial discovery of catalysts. Chem. Comm. 2310-2311
  56. Youngquist, R. S., Fuentes, G. R., Lacey, M. P. and Keough, T. (1995) Generation and screening of combinatorial peptide libraries designed for rapid sequencing by mass spectrometry. J. Am. Chem. Soc. 117, 3900-3906 https://doi.org/10.1021/ja00119a002
  57. Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T. and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767-773 https://doi.org/10.1126/science.1990438
  58. Frank, R. and Overwin, H. (1996) SPOT synthesis: epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol. Biol. 66, 149-169
  59. Krchnák, V., Vágner, J., Safár, P. and Lebl, M. (1988) Noninvasive continuous monitoring of solid-phase peptide synthesis by acid-base indicator. Collect. Czechoslov. Chem. Commun. 53, 25-42
  60. Lee, K.-N., Shin, D.-S., Lee, Y.-S. and Kim, Y.-K. (2003) Protein patterning by virtual mask photolithography using a micromirror array. J. Micromech. Microeng. 13, 18-25 https://doi.org/10.1088/0960-1317/13/1/303
  61. Singh-Gasson, S., Green, R. D., Yue, Y., Nelson, C., Blattner, F., Sussman, M. R. and Cerrina, F. (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol. 17, 974-978 https://doi.org/10.1038/13664
  62. Powell, K. D. and Fitzgerald, M. C. (2004) High-throughput screening assay for the tunable selection of protein ligands. J. Comb. Chem. 6, 262-269 https://doi.org/10.1021/cc034051e
  63. Topert, F., Pires, R., Landgraf, C., Oschkinat, H. and Schneider-Merger, J. (2001) Synthesis of an array comprising 837 variants of the hYAP WW protein domain. Angew. Chem. Int. Ed. 40, 897-900 https://doi.org/10.1002/1521-3773(20010302)40:5<897::AID-ANIE897>3.0.CO;2-X
  64. Uttamchandani, M., Chen, G. Y., Lesaicherre, M. L. and Yao, S. Q. (2004) Methods of generating peptide arrays for highthroughput enzyme screenings. Methods Mol. Biol. 264, 191-204
  65. Beebe, K. D., Wang, P., Arabaci, G. and Pei, D. (2000) Determination of the binding specificity of the SH2 domains of protein tyrosine phosphatase SHP-1 through the screening of a combinatorial phosphotyrosyl peptide library. Biochemistry 39, 13251-13260 https://doi.org/10.1021/bi0014397
  66. Bray, A. M., Maeji, N. J. and Geysen, H. M. (1990) The simultaneous multiple production of solution phase peptides: assessment of the Geysen method of simultaneous peptide synthesis. Tetrahedron Lett. 31, 5811-5814 https://doi.org/10.1016/S0040-4039(00)97966-8
  67. Dawson, P. E., Muir, T. W., Clark-Lewis, I. and Kent, S. B. H. (1994) Synthesis of proteins by native chemical ligation. Science 266, 776-779 https://doi.org/10.1126/science.7973629
  68. Gao, X., Yu, P., LeProust, E., Sonigo, L., Pellois, J. P. and Zhang, H. (1998) Oligonucleotide-synthesis using solution photogenerated acids. J. Am. Chem. Soc. 120, 12698-12699 https://doi.org/10.1021/ja9827191
  69. Lee, S. J. and Lee, S. Y. (2004) Microarrays of peptides elevated on the protein layer for efficient protein kinase assay. Anal. Biochem. 330, 311-316 https://doi.org/10.1016/j.ab.2004.04.008
  70. Leon, S., Quarrell, R. and Lowe, G. (1998) Evaluation of resins for on-bead screening : a study of papain and chymotrypsin specificity using PEGA-bound combinatorial peptide libraries. Bioorg. Med. Chem. Lett. 8, 2997-3002 https://doi.org/10.1016/S0960-894X(98)00534-4
  71. Ostresh, J. M., Winkle, J. H., Hamashin, V. T. and Houghten, R. A. (1994) Peptide libraries: Determination of relative reaction rates of protected amino acids in competitive couplings. Biopolymers. 34, 1681-1689 https://doi.org/10.1002/bip.360341212
  72. Rychlewski, L., Kschischo, M., Dong, L., Schutkowski, M. and Reimer, U. (2004) Target specificity analysis of the Abl kinase using peptide microarray data. J. Mol. Biol. 336, 307-311 https://doi.org/10.1016/j.jmb.2003.12.052
  73. Lam, K. S., Salmon, S. E., Hersh, E. M., Hruby, V. J., Kazmierski, W. M. and Knapp, R. J. (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82-84 https://doi.org/10.1038/354082a0
  74. Min, D.-H., Su, J. and Mrksich, M. (2004) Profiling kinase activities by using a peptide chip and mass spectrometry. Angew. Chem. Int. Ed. 43, 5973-5977 https://doi.org/10.1002/anie.200461061
  75. Scharn, D., Wenschuh, H., Reineke, U., Schneider-Mergener, J. and Germeroth, L. (2000) Spatially addressed synthesis of amino-and amino-oxy-substituted 1,3,5-triazine arrays on polymeric membranes. J. Com. Chem. 4, 361-369 https://doi.org/10.1021/cc000012g
  76. Xian, M., Fatima, Z., Zhang, W., Fang, J., Li, H., Pei, D., Loo, J., Stevenson, T. and Wang, P. G. (2004) Identification of $\alpha$- galactosyl epitope mimetics through rapid generation and screening of C-linked glycopeptide library. J. Comb. Chem. 6, 126-134 https://doi.org/10.1021/cc030042u
  77. Bray, A. M., Maeji, N. J., Jhingran, A. G. and Valerio, R. (1991) Gas phase cleavage of peptides from a solid support with ammonia vapor. Application in simultaneous multiple peptide synthesis. Tetrahedron Lett. 32, 6163-6166 https://doi.org/10.1016/0040-4039(91)80779-6
  78. Komolpis, K., Srivannavit, O. and Gulari, E. (2002) Light-directed simultaneous synthesis of oligopeptides on microarray substrate using a photogenerated acid. Biotechnol. Prog. 18, 641-646 https://doi.org/10.1021/bp015505n
  79. St. Hilaire, P. M., Alves, L. C., Herrera, F., Renil, M., Sanderson, S. J., Mottram, J. C., Coombs, G. H., Juliano, M. A., Juliano, L., Arevalo, J. and Meldal, M. (2002) Solid-phase library synthesis, screening, and selection of tight-binding reduced peptide bond inhibitors of a recombinant Leishmania mexicana cysteine protease B. J. Med. Chem. 45, 1971-1982 https://doi.org/10.1021/jm0110901

Cited by

  1. Practical Ring-Opening Strategy for the Sequence Determination of Cyclic Peptides from One-Bead-One-Compound Libraries vol.15, pp.10, 2013, https://doi.org/10.1021/co4000979
  2. Monolith peptide affinity chromatography for quantification of immunoglobulin M vol.1218, pp.17, 2011, https://doi.org/10.1016/j.chroma.2010.10.053
  3. ADIBO-Based “Click” Chemistry for Diagnostic Peptide Micro-Array Fabrication: Physicochemical and Assay Characteristics vol.18, pp.8, 2013, https://doi.org/10.3390/molecules18089833
  4. Tetraarylphosphonium Salts as Soluble Supports for the Synthesis of Small Molecules vol.46, pp.26, 2007, https://doi.org/10.1002/anie.200700833
  5. Application of gel-phase19F NMR spectroscopy for optimization of solid-phase synthesis of a hydrophobic peptide from the signal sequence of the mucin MUC1 vol.13, pp.5, 2007, https://doi.org/10.1002/psc.850
  6. Immobilization strategies for small molecule, peptide and protein microarrays vol.15, pp.6, 2009, https://doi.org/10.1002/psc.1130
  7. Determination of protease subsite preference on SPOT peptide array by fluorescence quenching-based assay vol.18, pp.6, 2012, https://doi.org/10.1002/psc.2409
  8. High-throughput screening of biocatalytic activity: applications in drug discovery vol.10, pp.2, 2006, https://doi.org/10.1016/j.cbpa.2006.02.033
  9. Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications vol.40, pp.2, 2011, https://doi.org/10.1007/s00726-010-0707-z
  10. Pentamer peptide from Fas antigen ligand inhibits tumor-growth with solid-bound form found by peptide array vol.66, 2008, https://doi.org/10.1111/j.1747-0285.2006.00357.x
  11. Substrate screening of protein kinases: Detection methods and combinatorial peptide libraries vol.94, pp.6, 2010, https://doi.org/10.1002/bip.21506
  12. Tetraarylphosphonium Salts as Soluble Supports for the Synthesis of Small Molecules vol.119, pp.26, 2007, https://doi.org/10.1002/ange.200700833
  13. Combinatorial Solid-Phase Peptide Synthesis and Bioassays vol.37, pp.33, 2006, https://doi.org/10.1002/chin.200633264
  14. Enhanced Membrane-tethered Mucin 3 (MUC3) Expression by a Tetrameric Branched Peptide with a Conserved TFLK Motif Inhibits Bacteria Adherence vol.288, pp.8, 2013, https://doi.org/10.1074/jbc.M112.408245
  15. Solid-Phase Peptide Library Synthesis on HiCore Resin for Screening Substrate Specificity of Brk Protein Tyrosine Kinase vol.10, pp.1, 2008, https://doi.org/10.1021/cc7001217
  16. Development of a novel peptide microarray for large-scale epitope mapping of food allergens vol.124, pp.2, 2009, https://doi.org/10.1016/j.jaci.2009.05.024
  17. A Convenient Approach to Prepare Topologically Segregated Bilayer Beads for One-Bead Two-Compound Combinatorial Peptide Libraries vol.19, pp.1, 2013, https://doi.org/10.1007/s10989-012-9316-x
  18. Influence of different surface chemistries on the ultrasensitive on-chip detection of enrofloxacin in milk vol.209, 2015, https://doi.org/10.1016/j.snb.2014.10.101