A Combined Approach for Locating Box H/ACA snoRNAs in the Human Genome

  • Eo, Hae Seok ;
  • Jo, Kwang Sun ;
  • Lee, Seung Won ;
  • Kim, Chang-Bae ;
  • Kim, Won
  • Received : 2004.10.10
  • Accepted : 2005.04.06
  • Published : 2005.08.31

Abstract

A novel combined method for locating box H/ACA small nucleolar RNAs (snoRNAs) is described, together with a software tool. The method adopts both a probabilistic hidden Markov model (HMM) and a minimum free energy (MFE) rule, and filters possible candidate box H/ACA snoRNAs obtained from genomic DNA sequences. With our novel method 12 known box H/ACA snoRNAs, and one strong candidate were identified in 30 nucleolar protein genomic sequences.

Keywords

box H/ACA snoRNA;Hidden Markov Model;Minimum Free Energy

References

  1. Andersen, J. S., Lyon, C. E., Fox, A. H., Leung, A. K., Lam, Y. W., et al. (2002) Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1-11 https://doi.org/10.1016/S0960-9822(01)00650-9
  2. Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998) Markov chains and hidden Markov models; in Biological Sequence Analysis, pp. 46-79, Cambridge University Press, Cambridge UK
  3. Edvardsson, S., Gardner, P. P., Poole, A. M., Hendy, M. D., Penny, D., et al. (2003) A search for H/ACA snoRNAs in yeast using MFE secondary structure prediction. Bioinformatics 19, 865-873 https://doi.org/10.1093/bioinformatics/btg080
  4. Eliceiri, G. L. (1999) Small nucleolar RNAs. Cell. Mol. Life Sci. 56, 22-31 https://doi.org/10.1007/s000180050003
  5. Kiss, A. M., Jady, B. E., Bertrand, E., and Kiss, T. (2004) Human box H/ACA pseudouridylation guide RNA machinery. Mol. Cell. Biol. 24, 5797-5807 https://doi.org/10.1128/MCB.24.13.5797-5807.2004
  6. Kiss-Laszlo, Z., Henry, Y., Bachellerie, J., Caizergues-Ferrer, M., and Kiss, T. (1996) Site specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85, 1077-1088 https://doi.org/10.1016/S0092-8674(00)81308-2
  7. Lane, B. G., Ofengand, J., and Gray, M. W. (1995) Pseudouridine and $O^{2'}$-methylated nucleosides. Significance of their selective occurrence in rRNA domains that function in ribosomecatalyzed synthesis of the peptide bonds in proteins. Biochimie 77, 7-15 https://doi.org/10.1016/0300-9084(96)88098-9
  8. Maden, B. E. H. and Wakeman, J. A. (1988) Pseudouridine distribution in mammalian 18S ribosomal RNA. A major cluster in the central region of the molecule. Biochem. J. 249, 459- 464
  9. Matzura, O. and Wennborg, A. (1996) RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bits Microsoft Windows. Comput. Appl. Biosci. 12, 247-249
  10. Tycowski, K. T., Smith, C. M., Shu, M. D., and Steitz, J. A. (1996) A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. Proc. Natl. Acad. Sci. USA 93, 14480-14485
  11. Fontana, W., Konings, D. A. M., Stadler, P. F., and Schuster, P. (1993) Statistics of RNA secondary structures. Biopolymers 33, 1389-1404 https://doi.org/10.1002/bip.360330909
  12. Hofacker, I. L. (2003) Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429- 3431 https://doi.org/10.1093/nar/gkg599
  13. Tollervey, D. and Kiss, T. (1997) Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol. 9, 337-342 https://doi.org/10.1016/S0955-0674(97)80005-1
  14. Decatur, W. A. and Fournier, M. J. (2003) RNA-guided nucleotide modification of ribosomal and other RNAs. J. Biol. Chem. 278, 695-698 https://doi.org/10.1074/jbc.R200023200
  15. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415 https://doi.org/10.1093/nar/gkg595
  16. Ofengand, J. (2002) Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 514, 17-25 https://doi.org/10.1016/S0014-5793(02)02305-0
  17. Grundy, W. N., Bailey, T. L., Elkan, C. P., and Baker, M. E. (1997) Meta-MEME: Motif-based hidden markov models of protein families. Comput. Appl. Biosci. 13, 397-406
  18. Bachellerie, J. P. and Cavaille, J. (1997) Guiding ribose methylation of rRNA. Trends Biochem. Sci. 22, 257-261 https://doi.org/10.1016/S0968-0004(97)01057-8
  19. Ganot, P., Caizergues-Ferrer, M., and Kiss, T. (1997) The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11, 941-956 https://doi.org/10.1101/gad.11.7.941
  20. Ofengand, J. and Bakin, A. (1997) Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryote, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 266, 246-268 https://doi.org/10.1006/jmbi.1996.0737
  21. Scherl, A., Coute, Y., Deon, C., Calle, A., Kindbeiter, K., et al. (2002) Functional proteomic analysis of human nucleolus. Mol. Biol. Cell 13, 4100-4109 https://doi.org/10.1091/mbc.E02-05-0271
  22. Lafontaine, D. L. J. and Tollervey, D. (1998) Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem. Sci. 23, 383-388 https://doi.org/10.1016/S0968-0004(98)01260-2
  23. Lowe, T. M. and Eddy, S. R. (1999) A computational screen for methylation guide snoRNAs in yeast. Sciences 283, 1168- 1171
  24. Eddy, S. R. (1999) Noncoding RNA genes. Curr. Opin. Genet. Dev. 9, 695-699 https://doi.org/10.1016/S0959-437X(99)00022-2
  25. Eddy, S. R. (2001) Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2, 919-929 https://doi.org/10.1038/35103511
  26. Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., et al. (1994) Fast folding and comparison of RNA secondary structures. Chemical Monthly 125, 167-188 https://doi.org/10.1007/BF00818163
  27. Zuker, M. and Jacobson, A. B. (1995) 'Well-determined' regions in RNA secondary structure prediction: analysis of small subunit ribosomal RNA. Nucleic Acids Res. 23, 2791-2798 https://doi.org/10.1093/nar/23.14.2791
  28. Leung, A. K. L., Andersen, J. S., Mann, M., and Lamond, A. I. (2003) Bioinformatic analysis of the nucleolus. Biochem. J. 376, 553-569 https://doi.org/10.1042/BJ20031169
  29. Krogh, A. (1998) An introduction to hidden Markov models for biological sequences; in Computational Methods in Molecular Biology, Salzberg, S. L., Searls, D. B., and Kasif, S. (eds.), pp. 45-63, Elsevier, Amsterdam
  30. Pruitt, K. D. and Maglott, D. R. (2001) RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res. 29, 137- 140 https://doi.org/10.1093/nar/29.1.137
  31. Zuker, M. and Jacobson, A. B. (1998) Using reliability information to annotate RNA secondary structures. RNA 4, 669-679 https://doi.org/10.1017/S1355838298980116
  32. Bachellerie, J. P., Cavaille, J., and Hüttenhofer, A. (2002) The expanding snoRNA world. Biochimie 84, 775-790 https://doi.org/10.1016/S0300-9084(02)01402-5
  33. Nag, M. K., Thai, T. T., Ruff, E. A., Selvamurugan, N., Kunnimalaiyaan, M., et al. (1993) Genes for E1, E2, and E3 small nucleolar RNAs. Proc. Natl. Acad. Sci. USA 90, 9001-9005

Acknowledgement

Supported by : Korea Research Foundation