DOI QR코드

DOI QR Code

The Mutation that Makes Escherichia coli Resistant to λ P Gene-mediated Host Lethality Is Located within the DNA Initiator Gene dnaA of the Bacterium

  • Datta, Indrani ;
  • Banik-Maiti, Sarbani ;
  • Adhikari, Lopa ;
  • Sau, Subrata ;
  • Das, Niranjan ;
  • Mandal, Nitai Chandra
  • Published : 2005.01.31

Abstract

Earlier, we reported that the bacteriophage $\lambda$ P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this $\lambda$ P gene-mediated lethality. In this paper, we show that under the $\lambda$ P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94% linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from $\lambda$ P gene-mediated killing and complements E. coli dnaAts46 at $42^{\circ}C$. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to $\lambda$ P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.

Keywords

DNA replication;dnaA gene of E. coli;Lambda P gene;$\lambda$ P lethality;rpl mutation

References

  1. Das Gupta, S. K., Bashyam, M. D. and Tyagi, A. K. (1993) Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J. Bacteriol. 175, 5186-5192
  2. Dodson, M., McMacken, R. and Echols, H. (1989) Specialized nucleoprotein structures at the origin of replication of bacteriophage $\lambda$ protein association and dissociation reactions responsible for localized initiation of replication. J. Mol. Biol. 264, 10719-10725
  3. Friedman, D. I. and Court, D. L. (1995) Transcription antitermination: The lambda paradigm updated. Mol. Microbiol. 18, 191-200 https://doi.org/10.1111/j.1365-2958.1995.mmi_18020191.x
  4. Greer, H. (1975a) The kil gene of bacteriophage 1. Virology 66, 589-604 https://doi.org/10.1016/0042-6822(75)90231-7
  5. Kutter, E., White, T., Kashlev, M., Uzan, M., McKinnley, J. and Guttman, B. (1994) Effects on host genome structure and expression; in Molecular Biology of Bacteriophage T4. Karam, J. D. (ed.), pp. 357-368, ASM Press, Washington D. C., USA
  6. Maiti, S., Mukhopadhyay, M. and Mandal, N. C. (1991a) Bacteriophage $\lambda$ P gene shows host killing which is not dependent on $\lambda$ DNA replication. Virology 182, 324-335 https://doi.org/10.1016/0042-6822(91)90676-3
  7. Mallory, J. B., Alfano, C. and McMacken, R. (1990) Host virus interactions in the initiation of bacteriophage $\lambda$ DNA replication. J. Biol. Chem. 265, 13297-13307
  8. Marszalek, J. and Kaguni, J. M. (1994) DnaA protein directs the binding of DnaB protein in initiation of DNA replication in Escherichia coli. J. Biol. Chem. 269, 4883-4890
  9. Maurer, R., Meyer, B. J. and Ptashne, M (1980) Gene regulation at the right operator (oR) of bacteriophage 1. I. oR3 and autogenous negative control by repressor. J. Mol. Biol. 139, 147-161 https://doi.org/10.1016/0022-2836(80)90302-2
  10. Roberts, J. W., Roberts, C. W. and Craig, N. L. (1978) Escherichia coli recA gene product inactivates phage $\lambda$ repressor. Proc. Natl. Acad. Sci. USA 75, 4714-4718 https://doi.org/10.1073/pnas.75.10.4714
  11. Wei, P. and Stewart, C. R. (1995) Genes that protect against the host killing activity of the E3 protein of Bacillus subtilis bacteriophage SPO1. J. Bacteriol. 177, 2933-2937
  12. Chattopadhyay, D. J. and Mandal, N. C. (1982) Studies on polylysogens containing lN-cI- prophages. I. Control of synthesis and maintenance of a large number of integrated $\lambda$ genomes. Virology 118, 439-447 https://doi.org/10.1016/0042-6822(82)90363-4
  13. Friedman, D. I., Olson, E. R., Georgopoulos, C., Tilly, K., Herskowitz, I. and Banuette, F. (1984) Interactions of bacteriophage and host macromolecules in the growth of bacteriophage I. Microbiol. Rev. 45, 299-325
  14. Rokeach, L. A. and Zyskind, J. W. (1986) RNA terminating within the E. coli origin of replication: stringent regulation and control by DnaA protein. Cell 46, 753-771 https://doi.org/10.1016/0092-8674(86)90351-X
  15. Furth, M. E. and Wickner, S. H. (1983) Lambda DNA replication; in Lambda II, Hendrix, R. W., Roberts, J. W. and Stahl, F. (eds.), pp. 145-173, Cold Spring Harbor Laboratory Press, New York, USA
  16. Kedzierska, B., Glinkowska, M., Iwanicki, A., Obuchowski, M., Sojka, P., Thomas, M. S. and Wegrzyn, G. (2003) Toxicity of the bacteriophage $\lambda$ cII gene product to Escherichia coli arises from inhibition of host cell DNA replication. Virology 313, 622-628 https://doi.org/10.1016/S0042-6822(03)00376-3
  17. Lieb, M. (1972) Properties of polylysogens containing derepressed $\lambda$N− prophages. II. The number of prophages affects bacterial viability. Virology 49, 818-820 https://doi.org/10.1016/0042-6822(72)90541-7
  18. Fang, L., Davey, M. J. and O'Donnel, M. (1999) Replisome assembly at oriC, the replication origin of E. coli reveals an explanation for initiation sites outside an origin, Mol. Cell. 4, 541-553 https://doi.org/10.1016/S1097-2765(00)80205-1
  19. Greer, H. (1975b) Host mutants resistant to phage lambda killing. Virology 66, 605-609 https://doi.org/10.1016/0042-6822(75)90232-9
  20. Hansen, E. B., Hansen, F. G. and von Meyenburg, K. (1982) The nucleotide sequence of the dnaA gene and the first part of the dnaN gene of Escherichia coli K-12. Nucl. Acids Res. 10, 7373-7385 https://doi.org/10.1093/nar/10.22.7373
  21. Datta, I., Sau, S., Sil, A. K. and Mandal, N. C. (2005) The bacteriophage $\lambda$ DNA replication protein P inhibits the oriC DNA and ATP binding functions of the DNA initiator protein DnaA of Escherichia coli J. Biochem. Mol. Biol. 38, 97-103 https://doi.org/10.5483/BMBRep.2005.38.1.097
  22. Maiti, S., Das, B. and Mandal, N. C. (1991b) Isolation and preliminary characterization of Escherichia coli mutants resistant to lethal action of the bacteriophage $\lambda$ P gene. Virology 182, 351-352 https://doi.org/10.1016/0042-6822(91)90679-6
  23. Marmur, J. (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3, 208-218 https://doi.org/10.1016/S0022-2836(61)80047-8
  24. Georgopoulos, C. and Hohn, B. (1978) Identification of a host protein necessary for bacteriophage morphogenesis (the groE gene product). Proc. Natl. Acad. Sci. USA 75, 131-135 https://doi.org/10.1073/pnas.75.1.131
  25. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA
  26. Sly, W. S., Eisen, H. and Siminovitch, L. S. (1968) Host survival following infection with or induction of bacteriophage lambda mutants. Virology 34, 112-127 https://doi.org/10.1016/0042-6822(68)90014-7
  27. Chattopadhyay, D. J., Nag, D. K. and Mandal, N. C. (1983) Studies on polylysogens containing ${\lambda}N^−cI^− $prophages. II. Role of high multiplicities in lysogen formation by 1$N^−cI^− $ phage. Virology 128, 265-270 https://doi.org/10.1016/0042-6822(83)90254-4
  28. Signer, E. R. (1969) Plasmid formation: A new mode of lysogeny of phage 1. Nature 223, 158-160 https://doi.org/10.1038/223158a0
  29. Silhavy, T. J., Berman, M. L. and Enquist, L. W. (1984) Experiments with gene fusion, Cold Spring Harbor Laboratory Press, New York, USA
  30. Libereck, K., Osipiuk, J., Zylicz, M., Ang, D., Skorko, J. and Georgopoulos, C. (1990) Physical interactions between bacteriophage and Escherichia coli proteins required for initiation of $\lambda$ DNA replication. J. Biol. Chem. 265, 3022-3029
  31. Sutton, M. D. and Kaguni, J. M. (1995) Novel alleles of the Escherichia coli dnaA gene are defective in replication of pSC101 but not of oriC. J. Bacteriol. 177, 6657-6665
  32. Wei, P. and Stewart, C. R. (1993) A cytotoxic early gene of Bacillus subtilis bacteriophage SPO1. J. Bacteriol. 175, 7887- 7900
  33. Sergueev, K., Yu, D., Austin, S. and Court, D. (2001) Cell toxicity caused by products of the pL operon of bacteriophage lambda. Gene 272, 227-235 https://doi.org/10.1016/S0378-1119(01)00535-2
  34. Echols, H. (1986) Bacteriophage $\lambda$ development: temporal switches and the choice of lysis or lysogeny. Trends Genet. 2, 26-31 https://doi.org/10.1016/0168-9525(86)90165-4
  35. Nechaev, S., Yuzenkova, Y., Niedziela-Majka, A., Heyduk, T. and Severinov, K. (2002) A novel bacteriophage-encoded RNA polymerase binding protein inhibits transcription initiation and abolishes transcription termination by host RNA polymerase. J. Mol. Biol. 320, 11-22 https://doi.org/10.1016/S0022-2836(02)00420-5

Cited by

  1. Phage Lambda P Protein: Trans-Activation, Inhibition Phenotypes and their Suppression vol.5, pp.2, 2013, https://doi.org/10.3390/v5020619
  2. Switch from θ to σ replication of bacteriophage λ DNA: factors involved in the process and a model for its regulation vol.278, pp.1, 2007, https://doi.org/10.1007/s00438-007-0228-y
  3. Lambda gpP-DnaB Helicase Sequestration and gpP-RpoB Associated Effects: On Screens for Auxotrophs, Selection for RifR, Toxicity, Mutagenicity, Plasmid Curing vol.8, pp.6, 2016, https://doi.org/10.3390/v8060172