Molecular Cloning of the DNA Gyrase Genes from Methylovorus Sp. Strain SS1 and the Mechanism of Intrinsic Quinolone Resistance in Methylotrophic Bacteria

  • Kim, Kwang-Seo (Department of Plant and Microbial Biology, University of California-Berkeley) ;
  • Kim, Jeong Hoon (Department of Pathology, University of Southern California) ;
  • Kim, Do Yeob (Molecular Microbiology Laboratory, Department of Biology, Yonsei University) ;
  • Kim, Hyun Jong (Department of Cell and Developmental Biology, Rutgers University, Nelson Biology Laboratories) ;
  • Park, Sang Tae (Children's Hospital Boston, Harvard Medical School) ;
  • Kim, Young Min (Molecular Microbiology Laboratory, Department of Biology, Yonsei University)
  • Received : 2005.07.15
  • Accepted : 2005.09.03
  • Published : 2005.12.31


The genes encoding the DNA gyrase A (GyrA) and B subunits (GyrB) of Methylovorus sp. strain SS1 were cloned and sequenced. gyrA and gyrB coded for proteins of 846 and 799 amino acids with calculated molecular weights of 94,328 and 88,714, respectively, and complemented Escherichia coli gyrA and gyrB temperature sensitive (ts) mutants. To analyze the role of type II topoisomerases in the intrinsic quinolone resistance of methylotrophic bacteria, the sequences of the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase and the C subunit (ParC) of topoisomerase IV (Topo IV) of Methylovorus sp. strain SS1, Methylobacterium extorquens AM1 NCIB 9133, Methylobacillus sp, strain SK1 DSM 8269, and Methylophilus methylotrophus NCIB 10515 were determined. The deduced amino acid sequences of the QRDRs of the ParCs in the four methylotrophic bacteria were identical to that of E. coli ParC. The sequences of the QRDR in GyrA were also identical to those in E. coli GyrA except for the amino acids at positions 83, 87, or 95. The $Ser^{83}$ to Thr substitution in Methylovorus sp. strain SS1, and the $Ser^{83}$ to Leu and $Asp^{87}$ to Asn substitutions in the three other methylotrophs, agreed well with the minimal inhibitory concentrations of quinolones in the four bacteria, suggesting that these residues play a role in the intrinsic susceptibility of methylotrophic bacteria to quinolones.


gyrA;gyrB;Gyrase Genes;Methylotrophic Bacteria;Methylovorus Sp. Strain SS1;Quinolone Resistance


  1. Breins, D. M., Ouadbesselam, S., Ng, E. Y., Tankovic, J., Shah, S., et al. (1997) Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of the parE gene encoding a subunit of topoisomerase IV. Antimicrob. Agents Chemother. 41, 175-179
  2. Champoux, J. J. (2001) DNA topoisomerase: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369-413
  3. Cullen, M. E., Wyke, A. W., Kuroda, R., and Fisher, L. M. (1989) Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4- qinolones. Antimicrob. Agents Chemother. 33, 886-894
  4. Jenkins, O., Byrom, D., and Jones, D. (1987) Methylophilus: a new genus of methanol-utilizing bacteria. Int. J. Syst. Bacteriol. 37, 446-448
  5. Kim, J. H., Cho, E. H., Kim, K. S., Kim, H. Y., and Kim, Y. M. (1998) Cloning and nucleotide sequence of the DNA gyrase gyrA gene from Serratia marcescens and characterization of mutations in gyrA of quinolone-resistant clinical isolates. Antimicrob. Agents Chemother. 42, 190-193
  6. Kreuzer, K. N. and Cozzarelli, N. R. (1979) Escherichia coli mutants thermosensitive for deoxyribonucleic acid gyrase subunit A; effects on deoxyribonucleic acid replication, transcription, and bacteriophage growth. J. Bacteriol. 14, 424-435
  7. Menzel, R. and Gellert, M. (1983) Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34, 105-113
  8. Parales, R. E. and Harwood, C. S. (1990) Nucleotide sequence of the gyrB gene of Pseudomonas putida. Nucleic Acids Res. 18, 5880
  9. Peel, D. and Quayle, J. R. (1961) Microbial growth on C1 compounds. 1. Isolation and characterization of Pseudomonas AM1. Biochem. J. 81, 465-469
  10. Seo, S. A. and Kim, Y. M. (1993) Isolation and characterization of a restricted facultative methylotrophic bacterium Methylovorus sp. strain SS1. Kor. J. Microbiol. 31, 179-183
  11. Vila, J., Ruiz, J., Marco, F., Barcelo, A., Goni, P., et al. (1994) Association between double mutation in gyrA gene of ciprofloxacin- resistant clinical isolates of Escherichia coli and MICs. Antimicrob. Agents Chemother. 38, 2477-2479
  12. Skovgaard, O. (1990) Nucleotide sequence of Proteus mirabilis DNA fragment homologous to the 60K-rnpA-rpmH-danAdnaN- recF-gyrB region of Escherichia coli. Gene 93, 27-34
  13. Yoshida, H., Bogaki, M., Nakamura, M., Yamanaka, L. M., and Nakamura, S. (1991) Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob. Agents Chemother. 35, 1647-1650
  14. Hopewell, R., Oram, M., Briesewitz, R., and Fisher, L. M. (1990) DNA cloning and organization of the Staphylococcus aureus gyrA and gyrB genes; close homology among gyrase proteins and implication for 4-quinolone action and resistance. J. Bacteriol. 172, 3481-3484
  15. Kato, J., Nishimura, Y., Imamura, R., Niki, H., Hiraga, S., et al. (1990) New topoisomerase essential for chromosome segregation in E. coli. Cell 63, 393-404
  16. Adams, D. E., Shekhtman, E. M., Zechiedrich, E. L., Schmid, M. B., and Cozzarelli, N. R. (1992) The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71, 277-288
  17. Gilardi, G. L. and Faur, Y. C. (1984) Pseudomonas mesophilica and an unnamed taxon, clinical isolate of pink-pigmented oxidative bacteria. J. Clin. Microbiol. 20, 626-629
  18. Poole, K. (2000) Efflux-mediated resistance to fluoroquinolones in Gram-negative bacteria. Antimircob. Agents Chemother. 44, 2233-2241
  19. Stein, D. C., Danaher, R. J., and Cook, T. M. (1991) Characterization of gyrB mutation responsible for low-level nalidixic acid resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 35, 622-626
  20. Vila, J., Ruiz, J., Goni, P., and De Anta, T. J. (1996) Detection of mutations in parC in quinolone-resistant clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. 40, 491-493
  21. Fujita, M. O., Yoshikawa, H., and Ogasawara, N. (1989) Structure of the dnaA region of Pseudomonas putida: conservation among three bacteria, Bacillus subtilis, Escherichia coli and Pseudomonas putida. Mol. Gen. Genet. 215, 381-387
  22. Reece, R. E. and Maxwell, A. (1991) DNA gyrase: structure and function. Crit. Rev. Biochem. Mol. Biol. 26, 335?375
  23. Lampe, M. F. and Bott, K. F. (1985) Genetic and physical orgainzation of the cloned gyrA and gyrB genes of Bacillus subtilis. J. Bacteriol. 162, 78-84
  24. Marmur, J. (1961) A procedure for the isolation of deoxyribonucleic acid from microorganism. J. Mol. Biol. 3, 208-218
  25. Wang, Y., Huang, W. M., and Taylor, D. E. (1993) Cloning and nucleotide sequence of the Campylobacter jejuni gyrA gene and characterization of quinolone resistance mutations. Antimicrob. Agents Chemother. 37, 457-463
  26. Kumagai, Y., Kato, J. I., Hoshino, K., Akasaka, T., Sato, K., et al. (1996) Quinolone-resistant mutants of Escherichia coli DNA topoisomerase IV parC gene. Antimicrob. Agents Chemother. 40, 710-714
  27. Yoshida, H., Bogaki, M., Nakamura, M., and Nakamura, S. (1990) Quinolone resistance-determining region in the gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34, 1271-1272
  28. Horowitz, D. S. and Wang, J. C. (1987) Mapping the active site tyrosine of Escherichia coli DNA gyrase. J. Biol. Chem. 262, 5339-5344
  29. Kim, Y. M. and Hegeman, G. D. (1981) Purification and some properties of carbon monoxide dehydrogenase form Pseudomonas carboxydohydrogena. J. Bacteriol. 148, 904-911
  30. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., et al. (1992) Short Protocols in Molecular Biology, 2nd ed. Wiley, N. Y
  31. Guillemin, I., Cambau, E., and Jarlier, V. (1995) Sequences of conserved region in the A subunit of DNA gyrase from nine species of the genus Mycobacterium: phylogenetic analysis and implication for intrinsic susceptibility to quinolones. Antimicrob. Agents Chemother. 39, 2145-2149
  32. Kureishi, A., Diver, J. M., Bechthold, B., Schollaardt, T., and Bryan, L. E. (1994) Cloning and nucleotide sequence of Pseudomonas aeruginosa DNA gyrase gyrA gene from strain PAO1 and quinolone-resistant clinical isolates. Antimicrob. Agents Chemother. 38, 1944-1952
  33. Adachi, T., Mizuuchi, M., Robinson, E. A., O'Dea, M. H., Gellert, M., et al. (1987) DNA sequence of the Escherichia coli gyrB gene; Application of a new sequencing strategy. Nucleic Acids Res. 15, 771-784
  34. Dimri, G. D. and Das, H. K. (1990) Cloning and sequence analysis of gyrA gene of Klebsiella pneumoniae. Nucleic Acids Res. 18, 151-156
  35. Moriya, S., Ogasawara, N., and Yoshikawa, H. (1985) Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. III. Nucleotide sequence of some 10,000 base pairs in the origin region. Nucleic Acids Res. 13, 2251-2262
  36. Tayler, D. E. and Andrew, C. S.-S. (1997) Cloning and nucleotide sequence of the gyrA gene from Campylobacter fetus subsp. fetus ATCC 27374 and characterization of ciprofloxacin- resistant laboratory and clinical isolates. Antimicrob. Agents Chemother. 41, 665-671
  37. Barnard, F. M. and Maxwell, A. (2001) Interaction between DNA gyrase and Quinolones: Effects of alanine mutations at GyrA subunit residues $Ser^{83}$ and $Asp^{87}$ . Antimircrob. Agents Chemother. 45, 1994-2000
  38. Kim, S. W., Kim, B. H., and Kim, Y. M. (1991) A Methylobacillus isolate growing only on methanol. Kor. J. Microbiol. 29, 250-257
  39. Oppegaard, H. and Soum, H. (1996) Cloning and nucleotide sequence of the DNA gyrase gyrA gene from the fish pathogen Aeromonas salmonicida. Antimicrob. Agents Chemother. 40, 1126-1133
  40. Colman, S. D., Hu, P. C., and Bott, K. F. (1990) Mycoplasma pneumoniae DNA gyrase genes. Mol. Microbiol. 4, 1129-1134
  41. Waters, B. and Davies, J. (1997) Amino acid variation in the GyrA subunit of bacteria potentially associated with natural resistance to fluoroquinolone antibiotics. Antimicrob. Agents Chemother. 41, 2766-2769
  42. Miller, R. V. and Scurlock, T. R. (1983) DNA gyrase (Topoisomerase II) from Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 110, 694-700
  43. Swanberg, S. L. and Wang, J. C. (1987) Cloning and sequencing of the Escherichia coli gyrA gene coding for the A subunit of DNA gyrase. J. Mol. Biol. 197, 729-736
  44. National Committee for Clinical Laboratory Standards (1989) Methods for Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard M7-A2 (2nd ed.), National Committee for Clinical Laboratory Standards, Villanova, PA
  45. Hanson, R. S. (1980) Ecology and diversity of methylotrophic bacteria. Adv. Appl. Microbiol. 26, 3-39
  46. Lai, C. Y. and Baumann, P. (1992) Genetic analysis of an aphid endosymbiont DNA fragment homologous to the rnpArpmH- dnaA-dnaN-gyrB region of eubacteria. Gene 113, 175-181
  47. Piddock, L. J. V. (1995) Mechanisms of resistance to fluoroquinolones: state-of-the-art 1992-1994. Drugs 49, 29-35
  48. Wolfson, J. S. and Hooper, D. C. (1985) The fluoroquinones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob. Agents Chemother. 28, 581-586
  49. Anthony, C. (1982) The Biochemistry of Methylotrophs, Academic Press, London
  50. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Habor Laboratory Press, Cold Spring Harbor, N. Y
  51. Belland, R. J., Morrison, S. G., Ison, C., and Huang, W. M. (1994) Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol. Microbiol. 14, 371-380
  52. Gootz, T. D. and Martin, B. A. (1991) Characterization of highlevel quinolone resistance in Campylobacter jejuni. Antimicrob. Agents Chemother. 35, 840-845
  53. Oram, M. and Fisher, L. M. (1991) 4-quinolone resistance mutations in the DNA gyrase in Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrob. Agents Chemother. 35, 387-389