DOI QR코드

DOI QR Code

Purification and Characterization of a Lectin from Arisaema tortuosum Schott Having in-vitro Anticancer Activity against Human Cancer Cell Lines

  • Dhuna, Vikram (Department of Molecular Biology and Biochemistry, Guru Nanak Dev University) ;
  • Bains, Jagmohan Singh (Department of Molecular Biology and Biochemistry, Guru Nanak Dev University) ;
  • Kamboj, Sukhdev Singh (Department of Molecular Biology and Biochemistry, Guru Nanak Dev University) ;
  • Singh, Jatinder (Department of Molecular Biology and Biochemistry, Guru Nanak Dev University) ;
  • Shanmugavel (Department of pharmacology, Regional Research Laboratory) ;
  • Saxena, Ajit Kumar (Department of pharmacology, Regional Research Laboratory)
  • Published : 2005.09.30

Abstract

A lectin with in-vitro anticancer activity against established human cancer cell lines has been purified by affinity chromatography on asialofetuin-linked amino activated silica beads from the tubers of Arisaema tortuosum, popularly known as Himalayan Cobra lily, a monocot plant from the family Araceae. The bound Arisaema tortuosum lectin (ATL) was eluted with glycine-HCl buffer, pH 2.5. ATL was effectively inhibited by asialofetuin, a complex desialylated serum glycoprotein as well as by N-acetyl-D-lactosamine, a disaccharide. It gave a single band corresponding to a subunit molecular weight of 13.5 kDa in SDS-PAGE, pH 8.8 both under reducing and non reducing conditions. When subjected to gel-filtration on Biogel P-200, it was found to have a molecular weight of 54 kDa, suggesting a homotetramer structure, in which individual polypeptides are not bound to each other with disulfide bonds. ATL is a glycoprotein with 0.9% carbohydrate content, stable up to $55^{\circ}C$ and at pH 2 to 10. The lectin had no requirement for divalent metal ions i.e. $Ca^{2+}$ and $Mn^{2+}$ for its activity. However, as reported for other monocot lectins, ATL gave multiple bands in isoelectric focusing and Native PAGE, pH 8.3. The lectin was found to inhibit in vitro proliferation of human cancer cell lines HT29, SiHa and OVCAR-5.

References

  1. Andrews, P. (1964) Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem. J. 91, 222-233
  2. Annick, B., Van Damme, E. J. M., Peumans, W. J. and Rouge, P. (1996) Structure-function relationship of monocot mannosebinding lectins. Plant Physiol. 112, 1531-1540 https://doi.org/10.1104/pp.112.4.1531
  3. Bryan, J. K. (1977) Molecular weights of proteins multimers from polyacrylamide gel electrophoresis. Annals Biochem. 78, 513-519 https://doi.org/10.1016/0003-2697(77)90111-7
  4. Chandra, N. R., Prabu, M. M., Suguna, K. and Vijayan, M. (2001) Structural similarity and functional diversity in proteins containing the legume lectin fold. Protein Engineering 11, 857-866 https://doi.org/10.1093/protein/14.11.857
  5. Davis, B. J. (1964) Disc electrophoresis. II. Methods and applications to human serum proteins. Ann. New York Acad. Sci. 121, 404-427 https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  6. Etzler, M. E. (1986) Distribution and function of plant lectins; in The Lectins- Properties, Functions and Applications in Biology and Medicine, Liener, I. E., N., Sharon, I. and Goldstein, J. (Eds.), pp. 371-435, Acadamic Press, Orlando, USA
  7. Gabius, H. J. (1987) Endogenous lectins in tumors and the immune system. Cancer Investigation. 5, 39-46 https://doi.org/10.3109/07357908709020305
  8. Goldstein, I. J., Hughes, R. C., Monsigny, M., Osawa, T. and Sharon, N. (1980) What should be called a lectin? Nature 285, 66 https://doi.org/10.1038/285066b0
  9. Green, E. D., Adelt, G., Baenziger, J. U., Wilson, S. and Van Halbeek, H. (1988) The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J. Biol. Chem. 263, 18253-18268
  10. Hajto, T., Hostanska, K. and Saller, R. (1999) Mistletoe therapy from the pharmacologic perspective. Forsch Komplementarmed. 6, 186-194 https://doi.org/10.1159/000021248
  11. Hayes, C. E. and Goldstein, I. J. (1974) An a-D-Galactosylbinding lectin from Banderiaea simplicifolia seeds. J. Biol. Chem. 249, 1904-1914
  12. Ito, N., Imai, S., Haga, S., Nagaike, C., Morimura, Y. and Hatake, K. (1996) Localization of binding sites of Ulex europaeus I, Helix pomatia and Griffonia simplicifolia I-B4 lectins and analysis of their backbone structures by several glycosidases and poly-N-acetyllactosamine-specific lectins in human breast carcinoma. Histochem. Cell Biol. 106, 331-339
  13. Kaku, H., Van Damme, E. J. M., Peumans, W. J. and Goldstein, I. J. (1990) Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins. Arch. Biochem. Biophys. 279, 298-304 https://doi.org/10.1016/0003-9861(90)90495-K
  14. Kaur, N., Singh, J. and Kamboj, S. S. (2002) Affinity purification and characterization of a seed lectin from Crotalaria medicaginea. Indian J. Biochem. Biophys. 39, 49-54
  15. Laemmli, U. K. (1970) Cleavage of structural prooteins during the assembly of the head of bacteriophage T4. Nature 277, 680-685 https://doi.org/10.1038/227680a0
  16. Lowry, O. H., Rosebrough, N. J., Farr, A. R. and Randall, R. J. (1951) Protein measurements with folin-phenol reagent. J. Biol. Chem. 193, 265-275
  17. Mo, H., Rice, K. G., Evers, D. L., Winter, H. C., Peumans, W. J., Van Damme, E. J. M. and Goldstein, I. J. (1999) Xanthosoma sagittifolium tubers contain a lectin with two different types of carbohydrate-binding sites. J. Biol. Chem. 274, 33300-33305 https://doi.org/10.1074/jbc.274.47.33300
  18. Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paul, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Wolff, A. V., Goodrich, M. G., Campbell, H., Mayo, J. and Boyd, M. (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Nat. Can. Inst. 83, 757-766 https://doi.org/10.1093/jnci/83.11.757
  19. Pang, Y., Shen, G. A., Liao, Z. H., Yao, J. H., Fei, J., Sun, X. F. and Tang, K. X. (2003) Molecular cloning and characterization of a novel lectin gene from Zephyranthes candida. DNA Sequence 14, 163-167 https://doi.org/10.1080/1042517031000089450
  20. Parslew, R., Jones, K. T., Rhodes, J. M. and Sharpe, G. R. (1999) The antiproliferative effect of lectin from the edible mushroom (Agaricus bisporus) on human keratinocytes: preliminary studies on its use in psoriasis. Brit. J. Dermat. 140, 56-60 https://doi.org/10.1046/j.1365-2133.1999.02607.x
  21. Paulova, M., Entlicher, G., Ticha, M., Kostir, J. V. and Kocourek, J. (1971) Studies of phytohemagglutinins. VII. Effect of $Mn^{2+}$ and $Ca^{2+}$ on hemagglutinin of phytohemagglutinin of Pisum sativum L. Biochim. Biophys. Acta 237, 513-518 https://doi.org/10.1016/0304-4165(71)90271-6
  22. Reisfeld, R. A., Lewis, O. J. and Williams, D. E. (1962) Disc electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 145, 281-283 https://doi.org/10.1038/195281a0
  23. Robertson, E. F., Dannelly, H. K., Malloy, P. J. and Reeve, H. C. (1987) Rapid isoelectric focussing in a vertical polyacrylamide minigel system. Annals Biochem. 167, 290-294 https://doi.org/10.1016/0003-2697(87)90166-7
  24. Shangary, S., Singh, J., Kamboj, S. S., Kamboj, K. K. and Sandhu, R. S. (1995) Purification and properties of four monocot lectins from the family Araceae. Phytochemistry 40, 449-455 https://doi.org/10.1016/0031-9422(95)00229-Z
  25. Sharon, N. and Lis, H. (1990) Legume lectins-a large family of homologous proteins. FASEB J. 4, 3198-3208
  26. Singh, J., Singh, J. and Kamboj, S. S. (2004) A novel mitogenic and antiproliferative lectin from a wild cobra lily, Arisaema favum. Biochem. Biophys. Res. Commun. 318, 1057-1065 https://doi.org/10.1016/j.bbrc.2004.04.135
  27. Spiro, R. G. (1966) Analysis of sugars found in glycoproteins. Meth. Enzymol. 8, 3-26 https://doi.org/10.1016/0076-6879(66)08005-4
  28. Van Damme, E. J. M., Allen, A. K. and Peumans, W. J. (1987) Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett. 215, 140-144 https://doi.org/10.1016/0014-5793(87)80129-1
  29. Van Damme, E. J. M., Goossens, K., Smeets, K., Van Leuven, F., Verhaert, P. and Peumans, W. J. (1995) The major tuber storage protein of araceae species is a lectin. Characterization and molecular cloning of the lectin from Arum maculatum L. Plant Physiol. 107, 1147-1158 https://doi.org/10.1104/pp.107.4.1147
  30. Van Damme, E. J. M., Brike, F., Winter, H. C., Van Leuven, F., Goldstein, I. J. and Peumans W. J. (1996) Molecular cloning of two different mannose-binding lectins from tulip bulbs. Eur. J Biochem. 236, 419-427 https://doi.org/10.1111/j.1432-1033.1996.00419.x
  31. Van Damme, E. J. M., Allen, A. K. and Peumans, W. J. (1988) Related mannose-specific lectins from different species of the family Amaryllidaceae. Physiol. Planta 73, 52-57 https://doi.org/10.1111/j.1399-3054.1988.tb09192.x
  32. Van Damme, E. J. M., Goldstein, I. J., Vercammen, G., Vuylsteke, J. and Peumans, W. J. (1992) Lectins of members of the Amaryllidaceae are encoded by multigene families which show extensive homologies. Physiol. Planta 86, 245-252 https://doi.org/10.1034/j.1399-3054.1992.860209.x
  33. Van Damme, E. J. M., Goldstein, I. J. and Peumans, W. J. (1991) A comparative study of related mannose-binding lectins from the Amaryllidaceae and Alliaceae. Phytochemistry 30, 509-514 https://doi.org/10.1016/0031-9422(91)83716-X
  34. Van Damme, E. J. M., Smeets, K., Torrekens, S., Van Leuven, F. and Peumans, W. J. (1993) The mannose-specific lectins from ramsons (Allium ursinum L.) are encoded by three sets of genes. Eur. J Biochem. 217, 123-129 https://doi.org/10.1111/j.1432-1033.1993.tb18226.x
  35. Van Damme, E. J. M., Smeets, K., Torrekens, S., Van Leuven, F. and Peumans, W. J. (1994) Characterization and molecular cloning of mannose-binding lectins from the Orchidaceae species Listera ovata, Epipactis helleborine and Cymbidium hybrid. Eur. J Biochem. 221, 769-777 https://doi.org/10.1111/j.1432-1033.1994.tb18790.x
  36. Whitakar, J. R. (1963) Determination of molecular weights of proteins by gel filtration on Sephadex. Annals Chem. 35, 1950-1953 https://doi.org/10.1021/ac60205a048
  37. Zarkovic, N., Vukovic, T., Loncaric, I., Miletic, M., Zarkovic, K., Borovic, S., Cipak, A., Sabolovic, S., Konitzer, M. and Mang, S. (2001) An overview on anticancer activities of the Viscum album extract Isorel. Cancer Biother. Radiopharma. 16, 55-62 https://doi.org/10.1089/108497801750096041

Cited by

  1. HPTLC analysis, antioxidant, anti-inflammatory and antiproliferative activities ofArisaema tortuosumtuber extract vol.52, pp.2, 2014, https://doi.org/10.3109/13880209.2013.831110
  2. Comparative Studies of Two Araceous Lectins by Steady State and Time-Resolved Fluorescence and CD Spectroscopy vol.19, pp.2, 2009, https://doi.org/10.1007/s10895-008-0409-z
  3. Purification and Characterization of a New D-Galactose-Specific Lectin from the Housefly,Musca domestica, and Its Antiproliferative Effect on Human K562 and MCF-7 Tumor Cells vol.10, pp.79, 2010, https://doi.org/10.1673/031.010.7901
  4. Conformational Transitions in Ariesaema curvatum Lectin: Characterization of an Acid Induced Active Molten Globule vol.21, pp.2, 2011, https://doi.org/10.1007/s10895-010-0766-2
  5. Comparison of Biochemical Characterization of Korean and Chinese Mung Bean Lectin vol.24, pp.6, 2014, https://doi.org/10.5352/JLS.2014.24.6.603
  6. Lectins from the Red Marine Algal SpeciesBryothamnion seaforthiiandBryothamnion triquetrumas Tools to Differentiate Human Colon Carcinoma Cells vol.2009, 2009, https://doi.org/10.1155/2009/862162
  7. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro vol.21, pp.5, 2014, https://doi.org/10.1016/j.sjbs.2014.04.002
  8. Antiproliferative effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in human leukemia cell lines vol.26, pp.7, 2012, https://doi.org/10.1016/j.tiv.2012.06.017
  9. Antioxidant and Immunomodulatory Potential of Cobra lily Species of North-western Himalayan Region: A Comparative Analysis vol.4, pp.3, 2014, https://doi.org/10.1080/22311866.2014.936905
  10. Isolation, purification and characterization of an N-acetyl-D-lactosamine binding mitogenic and anti-proliferative lectin from tubers of a cobra lily Arisaema utile Schott vol.01, pp.02, 2010, https://doi.org/10.4236/abb.2010.12012
  11. Purification, characterization and molecular cloning of a monocot mannose-binding lectin from Remusatia vivipara with nematicidal activity vol.27, pp.3, 2010, https://doi.org/10.1007/s10719-010-9279-0
  12. Ethnobotanical survey on distribution of medicinal plants in the genus Arisaema in ruins of fortresses used in medieval Japan vol.11, pp.18, 2017, https://doi.org/10.5897/JMPR2017.6353
  13. Microchip electrophoresis of oligosaccharides using lectin-immobilized preconcentrator gels fabricated by in situ photopolymerization vol.137, pp.9, 2012, https://doi.org/10.1039/c2an16015c
  14. Purification of a Lectin from M. rubra Leaves Using Immobilized Metal Ion Affinity Chromatography and Its Characterization vol.168, pp.8, 2012, https://doi.org/10.1007/s12010-012-9934-y
  15. Purification and characterization of an Anti-proliferative and mitogenic plant lectin from tubers of Arisaema speciosum vol.2, pp.9, 2010, https://doi.org/10.1016/S0975-3575(10)80115-4
  16. Crystal structure of a plant albumin from Cicer arietinum (chickpea) possessing hemopexin fold and hemagglutination activity vol.241, pp.5, 2015, https://doi.org/10.1007/s00425-014-2236-6