Enzymatic Synthesis of Lauric Acid Butyl Ester in Organic Media Containing Nonionic Surfactants

비이온 계면활성제를 포함한 유기 용액에서의 효소에 의한 라우르산부틸에스테르의 합성

  • Cheong, Yong-Il (Department of Chemical Engineering, Chung-Ang University) ;
  • Lim, Kyung-Hee (Department of Chemical Engineering, Chung-Ang University)
  • 정용일 (중앙대학교 화학신소재공학부) ;
  • 임경희 (중앙대학교 화학신소재공학부)
  • Received : 2005.07.11
  • Accepted : 2005.08.26
  • Published : 2005.10.10

Abstract

The reaction of lauric acid vinyl ester with n-butanol was established to give lauric acid butyl ester by subtilisin A-catalyzed transesterification in organic media containing nonionic surfactants. Pyridine has been used as an organic solvent since it provides higher yields than other organic solvents. However, because of stench of pyridine, compounds enzymatically synthesized in pyridine may be unsuitable as ingredients for foods and drugs. Hence, in order to select an organic solvent to replace pyridine, sugar esters were synthesized with the protease in various organic media. However, no solvent paralleled pyridine in yields. On the basis of this result, pyridine-based W/O microemulsions containing nonionic surfactants and water were used in enzymatic synthesis of the sugar ester, and when Tween 60, Brij 56, or 1-O-octyl-${\beta}$-D-glucopyranose was used for the W/O microemulsions, the yield was higher.

References

  1. K.-H. Lim, J. Kor. Oil. Chem. Soc., 13, 1 (1996)
  2. J. C. Jeon and K.-H. Lim, Persepectives of Industrial Chemistry, 4, 1 (2001)
  3. Agricultural Research Service News, 2000. 3. 10
  4. F. D. Brandner, R. H. Hunter, M. D. Brewster, and R. E. Bonner, Ind. Eng Chem., 37, 809 (1945) https://doi.org/10.1021/ie50429a010
  5. Us. patent, 2,322,820 (1943)
  6. N. B. Desai, Cosmet. Toilet., 108, 957 (1990)
  7. J. R. Vlahov, P. J. Vlahova, and R. J. Linhardt, J. Carbohydrate Chem., 16, 1 (1997) https://doi.org/10.1080/07328309708006506
  8. E. Fanton, C. Fayet, and J. Gelas, Carbohydrate Res., 298, 85 (1997) https://doi.org/10.1016/S0008-6215(96)00300-X
  9. A. Zaks and A. M. Klibanov, Science, 224, 1249 (1984) https://doi.org/10.1126/science.6729453
  10. A. M. Klibanov, Chemtech., 354 (1986)
  11. T. Polat, H. G. Bazin, and R. J. Linhardt, J. Carbohydrate Chem., 16, 1319 (1997) https://doi.org/10.1080/07328309708005752
  12. S. Shibatani, M. Kitagawa, and Y. Tokiwa, Biotech. Lett., 19, 511 (1997)
  13. M. Kitagawa and Y. Tokiwa, J. Carbohydrate Chem., 17, 893 (1998)
  14. M. Kitagawa, H. Fan, T. Raku, S. Shibatani, Y. Maekawa, Y. Hiraguri, R. Kurane, and Y. Tokiwa., Biotech. Lett., 21, 355 (1999) https://doi.org/10.1023/A:1005451009804
  15. O. Almarsson and A. M. Kibanov, Biotechnol. Bioeng., 49, 84 (1996)
  16. H. G. Park and H. N. Chang, Biotech. Lett., 22, 39 (2000) https://doi.org/10.1023/A:1005608527178
  17. T. Watanabe, R. Matsue, Y. Honda, and M. Kuwahara, Carbohydrate Res., 275, 215 (1995) https://doi.org/10.1016/0008-6215(95)00151-I
  18. R. T. Otto, U. T. Bornscheuer, C. Syldatk, and R. D. Schmid, J. Biotech., 64, 231 (1998) https://doi.org/10.1016/S0168-1656(98)00125-4
  19. Y. Yan, U. T. Bornscheuer, L. Cao, and R. D. Schmid, Enzyme Microbial Technol., 25, 725 (1999) https://doi.org/10.1016/S0141-0229(99)00106-4
  20. J. E. Kim, J. J. Han, J. H. Yoon, and J. S. Rhee, Biotechnol. Bioeng., 57, 345 (1998)
  21. H. G. Park, H. N. Chang, and J. S. Dordick, Biotech. Lett., 17, 1085 (1995) https://doi.org/10.1007/BF00143106
  22. M. Degueil-Castaing, B. De Jeso, S. Drouillard, and B. Maillard, Tetrahedron Lett., 28, 953, (1997)
  23. S. Bone and R. Pethig, J. Mol. Biol., 181, 323 (1985) https://doi.org/10.1016/0022-2836(85)90096-8
  24. H. Kitaguchi and A. M. Klibanov, J. Am. Chem. Soc., 111, 9272 ( 1989) https://doi.org/10.1021/ja00208a044
  25. A. Zaks and A. M. Klibanov, J. Biol. Chem., 263, 8017 (1988)