Synthesis and Characterization of Thermo Sensitive Poly(styrene-co-N-isopropylacrylamide) Microgels

열 감응성 Poly(styrene-co-N-isopropylacrylamide) 마이크로겔의 합성 및 특성

  • Cho, Suk Hyeong (Dipartment of Medical Materials, Hejeon Collige) ;
  • Kim, Kong Soo (Department of Industrial and Engineering Chemistry, Chungbuk National University) ;
  • Jung, Tea Uk (Department of Industrial and Engineering Chemistry, Chungbuk National University)
  • Received : 2005.01.20
  • Accepted : 2005.03.28
  • Published : 2005.06.10

Abstract

Core-shell Poly(styrene-co-N-isopropylacrylamide) (poly(St-co-NIPAm) was prepared by soap-free emulsion polymerization of styrene (St) and N-isopropylacrylamide (NIPAm) in aqueous solution with potassium persulfate (KPS) as an initiator. The effects of St/NIPAm ratio, concentrations of monomer and crosslinker were studied. Also, Thermo sensitivity of microgels prepared was investigated. Particle size of microgels increased with increasing mol ratio of NIPAm to styrene. Transmittance of the microgel dispersion decreased rapidly when heated above a low critical solution temperature (near $32{\sim}34^{\circ}C$, cloud point). Swelling ratio of the microgel increased with increasing of the concentration of monomer (NIPAm) and decreased proportional to the concentration of crosslinker.

References

  1. M. Okubo, Y. Katsuta, and T. Matzumoto, J. Polym. Sci. Polym. Lett. Ed., 20, 545 (1982)
  2. K. Furusawa, Y. Kimura, and T. Tagawa, J. Colloid Interface Sci., 109, 69 (1986) https://doi.org/10.1016/0021-9797(86)90282-1
  3. S. Lee and A. Rudin, J. Polym. Sci., Part A : Polymer Chem., 30, 865 (1992) https://doi.org/10.1002/pola.1992.080300517
  4. J. Ugelstad, L. Soderberg, and A. Berge, Nature, 303, 95 (1993) https://doi.org/10.1038/303095a0
  5. P. Clezardin, J. L. McGregor, and M. Manach, J. Chromatogr., 319, 67 (1985) https://doi.org/10.1016/S0021-9673(01)90540-0
  6. M. A. EL-Nokaly, D. M. piatt, and B. A. Charpentier, 'Polymeric Delivery Systems', ed. by M. J. Comstock, PP. 51-77, ACS, Washiton, DC (1993)
  7. S. Omi, K. Katami, A. Yamamoto, and M. Iso, J. Appl. Polym. Sci., 51, 1 (1994) https://doi.org/10.1002/app.1994.070510101
  8. C. Cheng, F. micale, J. Vanderhoff, and M. El-Aasser, J. Polym. Sci., Part A: Polym. Chem., 30, 235 (1986) https://doi.org/10.1002/pola.1992.080300208
  9. H. Recum, T. Okano, and S. W. Kim, J. Control. Release, 55, 121 (1998) https://doi.org/10.1016/S0168-3659(98)00042-X
  10. X. Zhang, R. Zhuo, and J. Zhang, J. Pharm. Sci., 235, 43 (2002)
  11. K. Kono, A. Henmi, H. Yamashita, H. Hayashi, and T. Takagishi, J. Control. Release, 59, 63 (1999) https://doi.org/10.1016/S0168-3659(98)00180-1
  12. C. Chu, J. T. Zhang, X. Zhang, and R. Zhuo, J. Polymer, 43, 4823 (2002) https://doi.org/10.1016/S0032-3861(02)00299-9
  13. C. M. Tseng, Y. Y. Lu, M. S. El-Aasser, and J. W. Vanderhoff, J. Polym. Sci., Part A: Polym. Chem. Ed., 24, 2995 (1986) https://doi.org/10.1002/pola.1986.080241126
  14. D. Zon, L. Sun, J. J. Aklonis, and R. Salovey, J. Polym. Sci., Part A: Polym. Chem., 30, 1463 (1992)
  15. A. R. Goodall, M. C. Wilkinson, and J. Hearn, J. Polym. Sci., Part A: Polym. Chem., 15, 2193 (1977)
  16. T. Shiroya, M. Yasui, K. Fujimoto, and H. Kawaguchi, Colloid and surfaces B: Biointerfaces., 4, 267 (1995)
  17. K. Achiha, R. Ojima, Y. Kasuya, K. Fujimoto, and H. Kawaguchi, Polymers for Advanced Technology, 6, 534 (1995) https://doi.org/10.1002/pat.1995.220060715
  18. H. Kawaguchi, Prog. Polym. Sci., 25, 1171 (2000) https://doi.org/10.1016/S0079-6700(00)00024-1
  19. F. Hoshino, T. Fujimoto, H. Kawaguchi, and Y. Ohtsuka, Polym. J., 19, 241 (1987) https://doi.org/10.1295/polymj.19.241
  20. F. Hoshino, H. Kawaguchi, and Y. Ohtsuka, Polym. J., 19, 1157 (1987) https://doi.org/10.1295/polymj.19.1157
  21. T. Okano, Advances in Polym. Sci., 110, 179 (1993) https://doi.org/10.1007/BFb0021133