The Kinetic Study of Carbon Deposition in CO2 Reforming of CH4

메탄의 이산화탄소 개질반응의 탄소퇴적속도에 관한 연구

  • Lee, Dong-Kyu (Department of Industrial Chemical Engineering, Chungbuk National University) ;
  • Lee, Sung-Hee (Department of Industrial Chemical Engineering, Chungbuk National University) ;
  • Hwang, Kap-Sung (Department of Health & Environmental Hygiene, Chungcheong University) ;
  • Kwon, Young-Du (Department of Environmental Engineering, Donghae University)
  • 이동규 (충북대학교 공업화학과) ;
  • 이성희 (충북대학교 공업화학과) ;
  • 황갑성 (충청대학교 보건환경위생 전공) ;
  • 권영두 (동해대학교 환경공학과)
  • Received : 2004.10.07
  • Accepted : 2005.03.21
  • Published : 2005.06.10

Abstract

This paper reports the study on coking rate and carbon formation route as a function of reaction temperature using the Ni catalysts in the $CO_2$ reforming of methane. In this paper, carbon deposition on catalysts and its kinetics during reforming reaction were studied by using a thermogravimetric analyzer. Kinetic studies show that reaction orders of carbon formation obtained 1.33 ($CH_4$) and -0.52 ($CO_2$) by experiments on partial pressure of reactant gas, respectively. On the basis of model equation, the kinetic parameters for the coking reaction at different temperatures indicated that methane decomposition dominated carbon formation at lower temperatures ($<600^{\circ}C$), while $CH_4$decomposition and Boudouard reactions become significant for coking in the temperature range of $600{\sim}700^{\circ}C$.

Acknowledgement

Supported by : 충북대학교

References

  1. A. Angeliki, Lemonidou, and A. Iacovos, Vasalos, Appl. Catal. A, 228, 227 (2002)
  2. S. Wang and G. Q. Lu, Energy & Fuels, 12, 1235 (1998) https://doi.org/10.1021/ef980064j
  3. S. Wang and G. Q. Lu, Ind. Eng. Chem. Res., 38, 2615 (1999) https://doi.org/10.1021/ie980489t
  4. S. Wang and G. Q. Lu, Appl. Catal., B: Environmental, 16, 269 (1998) https://doi.org/10.1016/S0926-3373(97)00083-0
  5. K. S. Hwang, H. Y. Zhu, and G. Q. Lu, Catal. Today, 68, 183 (2001) https://doi.org/10.1016/S0920-5861(01)00299-1
  6. S. B. Tang, F. L. Qiu, S. J. Lu, and M. Y. Zhao, J. Nat. Gas Chem., 1, 62 (1993)
  7. T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki, and T. Mori, Appl. Catal. A, 144, 111 (1996) https://doi.org/10.1016/0926-860X(96)00100-7
  8. K. I. Moon, C. H. Kim, J. S. Choi, S. H. Lee, Y. G. Kim, and J. S. Lee, HWAHAK KONGHAK, 35, 890 (1997)
  9. L. Yongdan, J. Chen, and L. Chang, Appl. Catal. A, 163, 45 (1997) https://doi.org/10.1016/S0926-860X(97)00116-6
  10. M. Ito, T. Tagawa, and S. Goto, Appl. Catal. A, 177, 15 (1999) https://doi.org/10.1016/S0926-860X(98)00251-8
  11. B. Dady, Dadyburjor, and Zhenyu Liu, Chem. Eng. Sci., 47, 645 (1992) https://doi.org/10.1016/0009-2509(92)80014-4
  12. K. Liu, S. C. Fung, T. C. Ho, and D. S. Rumschitzki, Ind. Eng. Chem. Res., 36, 3264 (1997) https://doi.org/10.1021/ie970055i
  13. G. J. Millar, S. Wang, and G. Q. Lu, Energy & Fuels, 10, 896 (1996) https://doi.org/10.1021/ef950227t