Effect of the Urease Accessory Genes on Activation of the Helicobacter pylori Urease Apoprotein

  • Park, Jeong-Uck (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Song, Jae-Young (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Kwon, Young-Cheol (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Chung, Mi-Ja (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Jun, Jin-Su (Department of Pediatrics, Gyeongsang National University College of Medicine) ;
  • Park, Jeong-Won (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Park, Seung-Gyu (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Hwang, Hyang-Ran (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Choi, Sang-Haeng (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Baik, Seung-Chul (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Kang, Hyung-Lyun (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Youn, Hee-Shang (Department of Pediatrics, Gyeongsang National University College of Medicine) ;
  • Lee, Woo-Kon (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Cho, Myung-Je (Department of Microbiology, Gyeongsang National University College of Medicine) ;
  • Rhee, Kwang-Ho (Department of Microbiology, Gyeongsang National University College of Medicine)
  • Received : 2005.07.11
  • Accepted : 2005.09.14
  • Published : 2005.12.31

Abstract

The roles that accessory gene products play in activating the Helicobacter pylori urease apoprotein were examined. The activity of the urease apoprotein increased in the following order when it was expressed with the accessory genes: ureG < ureGH < ureFGH < ureEFGH < ureIEFGH. Moreover, stepwise additions of ureE and ureI to ureFGH significantly increased urease activity. Urease apoproteins coexpressed with ureFGH, ureEFGH, and ureIEFGH had similar low chymotrypsin susceptibilities. In vivo and in vitro activation studies showed that the cooperative effect of the accessory proteins involved processes in which the UreFGH complex, UreE, and UreI were implicated. Thus, the UreFGH complex may serve to alter the conformation of the apoprotein into one that is more competent to assemble a stable metallocenter, and that facilitates cooperative effects.

Keywords

Chymotrypsin Susceptibility;Conformation;Helicobacter pylori;Urease Accessory Gene

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Cho, M. J., Jeon, B. S., Park, J. W., Jung, T. S., Song, J. Y., et al. (2002) Identifying the major proteome components of Helicobacter pylori strain 26695. Electrophoresis 23, 1161-1173 https://doi.org/10.1002/1522-2683(200204)23:7/8<1161::AID-ELPS1161>3.0.CO;2-7
  2. Clayton, C. L., Pallen, M. J., Kleanthous, H., Wren, B. W., and Tabaqchali, S. (1990) Nucleotide sequence of two genes from Helicobacter pylori encoding for urease subunits. Nucleic Acids Res. 18, 362 https://doi.org/10.1093/nar/18.2.362
  3. Cussac, V., Ferrero, R L., and Labigne, A. (1992) Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J. Bacteriol. 174, 2466-2473
  4. Hu, L. T. and Mobley, H. L. (1993) Expression of catalytically active recombinant Helicobacter pylori urease at wild-type levels in Escherichia coli. Infect. Immun. 61, 2563-2569
  5. Mobley, H. L., Island, M. D., and Hausinger, R. P. (1995) Molecular biology of microbial ureases. Microbiol. Rev. 59, 451-480
  6. Park, I. S. and Hausinger, R. P. (1995a) Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter. Science 267, 1156-1158 https://doi.org/10.1126/science.7855593
  7. Labigne, A., Cussac, V., and Courcoux, P. (1991) Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J. Bacteriol. 173, 1920-1931
  8. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  9. Hu, L. T. and Mobley, H. L. (1990) Purification and N-terminal analysis of urease from Helicobacter pylori. Infect. Immun. 58, 992-998
  10. Rektorschek, M., Buhmann, A., Weeks, D., Schwan, D., Bensch, K. W., et al (2000) Acid resistance of Helicobacter pylori depends on the UreI membrane protein and an inner membrane proton barrier. Mol. Microbiol. 36, 141-152 https://doi.org/10.1046/j.1365-2958.2000.01835.x
  11. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350-4354
  12. Kim, J. I., Baik, S. C., Cho, M. J., Lee, W. K., and Rhee, K. H. (1991) Purification of the urease of Helicobacter pylori and production of monoclonal antibody to the urease of Helicobacter pylori. J. Korean Soc. Microbiol. 26, 531-540
  13. Dunn, B. E., Campbell, G. P., Perez-Perez, G. I., and Blaser, M. J. (1990) Purification and characterization of urease from Helicobacter pylori. J. Biol. Chem. 265, 9464-9469
  14. Park, I. S. and Hausinger, R. P. (1995b) Evidence for the presence of urease apoprotein complexes containing UreD, UreF, and UreG in cells that are competent for in vivo enzyme activation. J. Bacteriol. 177, 1947-1951
  15. Benoit, S. and Maier, R. J. (2003) Dependence of Helicobacter pylori urease activity on the nickel-sequestering ability of the UreE accessory protein. J. Bacteriol. 185, 4787-4795 https://doi.org/10.1128/JB.185.16.4787-4795.2003
  16. Ercan, A. and Grossman, S. H. (2003) Proteolytic susceptibility of creatin kinase isozymes and arginine kinase. Biochem. Biophys. Res. Commun. 306, 1014-1018 https://doi.org/10.1016/S0006-291X(03)01102-1
  17. Kim, T.-H., Lee, J.-Y., Kang, B.-S., and Bae, Y.-S. (2005) In Vitro characterization of protein kinase CKII ${\beta}$ mutants defective in ${\beta}$-${\beta}$ dimerization. Mol. Cells 19, 124-130
  18. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  19. Mobley, H. L., Hu, L. T., and Foxal, P. A. (1991) Helicobacter pylori urease: properties and role in pathogenesis. Scand. J. Gastroenterol. Suppl. 187, 39-46
  20. Shizuya, H., Birren, B., Kim, U. J., Mancino, V., Slepak, T., et al. (1992) Cloning and stable maintenance of 300-kilobasepair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794-8797
  21. Lee, M. H., Pankratz, H. S., Wang, S., Scott, R. A., Finnegan, M. G., et al. (1993) Purification and characterization of Klebsiella aerogenes UreE protein: a nickel-binding protein that functions in urease metallocenter assembly. Protein Sci. 2, 1042-1052 https://doi.org/10.1002/pro.5560020617
  22. Lee, W. K., An, Y. S., Cho, M. J., Baik, S. C., Choi, Y. J., et al. (1998) Control mechanism for production and activation of Helicobacter pylori urease. J. Korean Soc. Microbiol. 33, 1-13
  23. Voland, P., Weeks, D. L., Marcus, E. A., Prinz, C., Sachs, G., et al. (2003) Interactions among the seven Helicobacter pylori proteins encoded by the urease gene cluster. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G96-106
  24. Moffatt, B. A. and Studier, F. W. (1987) T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 49, 221-227 https://doi.org/10.1016/0092-8674(87)90563-0
  25. Akada, J. K., Shirai, M., Takeuchi, H., Tsuda, M., and Nakazawa, T. (2000) Identification of the urease operon in Helicobacter pylori and its control by mRNA decay in response to pH. Mol. Microbiol. 36, 1071-1084 https://doi.org/10.1046/j.1365-2958.2000.01918.x
  26. Hazell, S. L., Lee, A., Brady, L., and Hennessy, W. (1986) Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J. Infect. Dis. 153, 658-663 https://doi.org/10.1093/infdis/153.4.658
  27. Kim, C.-H. (2003) A Salmonella typhimurium rfaE mutant recovers invasiveness for human epithelial cells when complemented by wild type rfaE (controlling biosynthesis of ADP-Lglycero- D-manno-heptose-containing lipopolysaccharide). Mol. Cells 15, 226-232
  28. Chang, A. C. and Cohen, S. N. (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141-1156
  29. Weatherburn, M. W. (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39, 971-974 https://doi.org/10.1021/ac60252a045