Molecular Chaperones in Protein Quality Control

  • Lee, Suk-Yeong (Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine) ;
  • Tsai, Francis T.F. (Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine)
  • Published : 2005.05.31


Proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating human diseases, such as prion-mediated infections, Alzheimer's disease, type II diabetes and cystic fibrosis. While the native conformation of a polypeptide is encoded within its primary amino acid sequence and is sufficient for protein folding in vitro, the situation in vivo is more complex. Inside the cell, proteins are synthesized or folded continuously; a process that is greatly assisted by molecular chaperones. Molecular chaperones re a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. With our increasing understanding of the proteome, it is becoming clear that the number of proteins that can be classified as molecular chaperones is increasing steadily. Many of these proteins have novel but essential cellular functions that differ from that of more 'conventional' chaperones, such as Hsp70 and the GroE system. This review focuses on the emerging role of molecular chaperones in protein quality control, i.e. the mechanism that rids the cell of misfolded or incompletely synthesized polypeptides that otherwise would interfere with normal cellular function.


Clp/Hsp100;Molecular chaperones;Proteasome;Protein folding;Protein quality control


  1. Braun, B. C., Glickman, M., Kraft, R., Dahlmann, B., Kloetzel, P. M., Finley, D. and Schmidt, M. (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol. 1, 221-226
  2. Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E. and Ban, N. (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590- 596
  3. Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H. D. and Huber, R. (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463-471
  4. Harrison, C. J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. and Kuriyan, J. (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431-435
  5. Kessel, M., Maurizi, M. R., Kim, B., Kocsis, E., Trus, B. L., Singh, S. K. and Steven, A. C. (1995) Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. J. Mol. Biol. 250, 587-594
  6. Ludlam, A. V., Moore, B. A. and Xu, Z. (2004) The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae. Proc. Natl. Acad. Sci. USA 101, 13436-13441
  7. Mogk, A., Schlieker, C., Strub, C., Rist, W., Weibezahn, J. and Bukau, B. (2003) Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. J. Biol. Chem. 278, 17615- 17624
  8. Motohashi, K., Watanabe, Y., Yohda, M. and Yoshida, M. (1999) Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA 96, 7184-7189
  9. Ogura, T. and Wilkinson, A. J. (2001) AAA+ superfamily ATPases: common structure-diverse function. Genes Cells 6, 575-597
  10. Pickart, C. M. (2004) Back to the future with ubiquitin. Cell 116, 181-190
  11. Horwich, A. L., Weber-Ban, E. U. and Finley, D. (1999) Chaperone rings in protein folding and degradation. Proc. Natl. Acad. Sci. USA 96, 11033-11040
  12. Kim, Y.-I., Levchenko, I., Fraczkowska, K., Woodruff, R. V., Sauer, R. T. and Baker, T. A. (2001) Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol. 8, 230-233
  13. Glover, J. R. and Lindquist, S. (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73-82
  14. Guo, F., Maurizi, M. R., Esser, L. and Xia, D. (2002) Crystal structure of ClpA, an HSP100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277, 46743-46752
  15. Kim, K. K., Kim, R. and Kim, S. H. (1998) Crystal structure of a small heat-shock protein. Nature 394, 595-599
  16. Lee, S., Sowa, M. E., Watanabe, Y., Sigler, P. B., Chiu, W., Yoshida, M. and Tsai, F. T. F. (2003b) The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229-240
  17. Parsell, D. A., Kowal, A. S., Singer, M. A. and Lindquist, S. (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475-478
  18. Hartl, F. U. and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858
  19. Mogk, A., Tomoyasu, T., Goloubinoff, P., Rüdiger, S., Röder, D., Langen, H. and Bukau, B. (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18, 6934-6949
  20. Beuron, F., Maurizi, M. R., Belnap, D. M., Kocsis, E., Booy, F. P., Kessel, M. and Steven, A. C. (1998) At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J. Struct. Biol. 123, 248-259
  21. Meyer, P., Prodromou, C., Hu, B., Vaughan, C., Roe, S. M., Panaretou, B., Piper, P. W. and Pearl, L. H. (2003) Structural and functional analysis of the middle segment of Hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell 11, 647-658
  22. Groll, M., Bochtler, M., Brandstetter, H., Clausen, T. and Huber, R. (2005) Molecular machines for protein degradation. Chembiochem. 6, 222-256
  23. Gottesman, S., Roche, E., Zhou, Y. and Sauer, R. T. (1998) The ClpXP and ClpAP proteases degrade proteins with carboxyterminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338-1347
  24. Sauer, R. T., Bolon, D. N., Burton, B. M., Burton, R. E., Flynn, J. M., Grant, R. A., Hersch, G. L., Joshi, S. A., Kenniston, J. A., Levchenko, I., Neher, S. B., Oakes, E. S. C., Siddiqui, S. M., Wah, D. A. and Baker, T. A. (2004) Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119, 9- 18
  25. Squires, C. and Squires, C. L. (1992) The Clp proteins: proteolysis regulators of molecular chaperones? J. Bacteriol. 174, 1081-1085
  26. Wickner, S., Gottesman, S., Skowyra, D., Hoskins, J., McKenney, K. and Maurizi, M. R. (1994) A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl. Acad. Sci. USA 91, 12218-12222
  27. Beyer, A. (1997) Sequence analysis of the AAA protein family. Protein Sci. 6, 2043-2058
  28. Neuwald, A. F., Aravind, L., Spouge, J. L. and Koonin, E. V. (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27-43
  29. Schirmer, E. C., Glover, J. R., Singer, M. A. and Lindquist, S. (1996) Hsp100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci. 21, 289-296
  30. Deuerling, E. and Bukau, B. (2004) Chaperone-assisted folding of newly synthesized proteins in the cytosol. Crit. Rev. Biochem. Mol. Biol. 39, 261-277
  31. Zolkiewski, M. (1999) ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. J. Biol. Chem. 274, 28083-28086
  32. Vale, R. D. (2000) AAA proteins: Lords of the ring. J. Cell Biol. 150, 13-19
  33. Cashikar, A. G., Schirmer, E. C., Hattendorf, D. A., Glover, J. R., Ramakrishnan, M. S., Ware, D. M. and Lindquist, S. L. (2002) Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein. Mol. Cell 9, 751-760
  34. Hegerl, R., Pfeifer, G., Puhler, G., Dahlmann, B. and Baumeister, W. (1991) The three-dimensional structure of proteasomes from Thermoplasma acidophilum as determined by electron microscopy using random conical tilting. FEBS Lett. 283, 117- 121
  35. Walter, S. and Buchner, J. (2002) Molecular chaperones-cellular machines for protein folding. Angew. Chem. Int. Ed. Engl. 41, 1098-1113<1098::AID-ANIE1098>3.0.CO;2-9
  36. Ikai, A., Nishigai, M., Tanaka, K. and Ichihara, A. (1991) Electron microscopy of 26 S complex containing 20 S proteasome. FEBS Lett. 292, 21-24
  37. Wawrzynow, A., Wojtkowiak, D., Marszalek, J., Banecki, B., Jonsen, M., Graves, B., Georgopoulos, C. and Zylicz, M. (1995) The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpPClpX protease, is a novel molecular chaperone. EMBO J. 14, 1867-1877
  38. Kim, D. Y. and Kim, K. K. (2003) Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J. Biol. Chem. 278, 50664-50670
  39. Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W. and Huber, R. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268, 533-539
  40. Goloubinoff, P., Mogk, A., Zvi, A. P., Tomoyasu, T. and Bukau, B. (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732-13737
  41. Gribun, A., Kimber, M. S., Ching, R., Sprangers, R., Fiebig, K. M. and Houry, W. A. (2005) The ClpP double-ring tetradecameric protease exhibits plastic ring-ring interactions and the N-termini of Its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation. J. Biol. Chem. 280, 16185-16196
  42. Sanchez, Y., Taulien, J., Borkovich, K. A. and Lindquist, S. (1992) Hsp104 is required for tolerance to many forms of stress. EMBO J. 11, 2357-2364
  43. Lee, S., Hisayoshi, M., Yoshida, M. and Tsai, F. T. F. (2003a) Crystallization and preliminary X-ray crystallographic analysis of the Hsp100 chaperone ClpB from Thermus thermophilus. Acta Crystallogr. D 59, 2334-2336
  44. Whitby, F. G., Masters, E. I., Kramer, L., Knowlton, J. R., Yao, Y., Wang, C. C. and Hill, C. P. (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115-120
  45. Joshi, S. A., Hersch, G. L., Baker, T. A. and Sauer, R. T. (2004) Communication between ClpX and ClpP during substrate processing and degradation. Nat. Struct. Mol. Biol. 11, 404-411
  46. Weibezahn, J., Tessarz, P., Schlieker, C., Zahn, R., Maglica, Z., Lee, S., Zentgraf, H., Weber-Ban, E. U., Dougan, D. A., Tsai, F. T. F., Mogk, A. and Bukau, B. (2004) Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653- 665
  47. Young, J. C., Agashe, V. R., Siegers, K. and Hartl, F. U. (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781-791
  48. Glickman, M. H., Rubin, D. M., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., Baumeister, W., Fried, V. A. and Finley, D. (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9- signalosome and eIF3. Cell 94, 615-623
  49. Sousa, M. C., Trame, C. B., Tsuruta, H., Wilbanks, S. M., Reddy, V. S. and McKay, D. B. (2000) Crystal and solution structure of an HslUV protease-chaperone complex. Cell 103, 633-643
  50. Lee, S., Sowa, M. E., Choi, J. M. and Tsai, F. T. F. (2004) The ClpB/Hsp104 molecular chaperone-a protein disaggregating machine. J. Struct. Biol. 146, 99-105
  51. Unno, M., Mizushima, T., Morimoto, Y., Tomisugi, Y., Tanaka, K., Yasuoka, N. and Tsukihara, T. (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 10, 609-618
  52. Bochtler, M., Hartmann, C., Song, H. K., Bourenkov, G. P., Bartunik, H. D. and Huber, R. (2000) The structures of HslU and the ATP-dependent protease HslU-HslV. Nature 403, 800- 805
  53. Sanchez, Y. and Lindquist, S. (1990) Hsp104 required for induced thermotolerance. Science 248, 1112-1115
  54. Squires, C. L., Pedersen, S., Ross, B. M. and Squires, C. (1991) ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173, 4254-4262
  55. Wang, J., Hartling, J. A. and Flanagan, J. M. (1997) The structure of ClpP at 2.3 A resolution suggests a model for ATPdependent proteolysis. Cell 91, 447-456
  56. Anfinsen, C. B. (1973) Principles that govern the folding of protein chains. Science 181, 223-230
  57. Flanagan, J. M., Wall, J. S., Capel, M. S., Schneider, D. K. and Shanklin, J. (1995) Scanning transmission electron microscopy and small-angle scattering provide evidence that native Escherichia coli ClpP is a tetradecamer with an axial pore. Biochemistry 34, 10910-10917
  58. Wang, Q., Song, C. and Li, C. C. (2004) Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J. Struct. Biol. 146, 44-57
  59. Xu, Z., Horwich, A. L. and Sigler, P. B. (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741-750
  60. Levchenko, I., Luo, L. and Baker, T. A. (1995) Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev. 9, 2399-2408

Cited by

  1. Effect of W62G mutation of hen lysozyme on the folding in vivo vol.338, pp.2, 2005,
  2. Multi-faceted role of HSP40 in cancer vol.26, pp.6, 2009,
  3. Molecular chaperones vol.36, pp.1, 2010,
  4. The Biochemistry of Disease: Desperately Seeking Syzygy vol.78, pp.1, 2009,
  5. Synergistic coordination of polyethylene glycol with ClpB/DnaKJE bichaperone for refolding of heat-denatured malate dehydrogenase vol.25, pp.4, 2009,
  6. Self-Assembly of Fibers and Fibrils vol.45, pp.44, 2006,
  7. Selbstorganisation von Fasern und Fibrillen vol.118, pp.44, 2006,
  8. The association of SNPs in Hsp90β gene 5′ flanking region with thermo tolerance traits and tissue mRNA expression in two chicken breeds vol.40, pp.9, 2013,
  9. KSHV Reactivation and Novel Implications of Protein Isomerization on Lytic Switch Control vol.7, pp.1, 2015,
  10. Examination of ClpB Quaternary Structure and Linkage to Nucleotide Binding vol.55, pp.12, 2016,
  11. Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine vol.227, pp.6, 2008,
  12. Molecular mechanisms underlying chemical liver injury vol.14, 2012,
  13. The role of protein quality control in mitochondrial protein homeostasis under oxidative stress vol.10, pp.7, 2010,
  14. Understanding protein folding from globular to amyloid state vol.48, pp.11, 2013,
  15. Stress Chaperones, Mortalin, and Pex19p Mediate 5-Aza-2' Deoxycytidine-Induced Senescence of Cancer Cells by DNA Methylation-Independent Pathway vol.62, pp.3, 2007,
  16. Mitochondrial ATP-independent chaperones vol.61, pp.9, 2009,
  17. Thermodynamics of protein folding: a random matrix formulation vol.22, pp.41, 2010,
  18. Ubiquitin proteasome system as a pharmacological target in neurodegeneration vol.6, pp.9, 2006,
  19. Rethinking peptide supply to MHC class I molecules vol.7, pp.5, 2007,
  20. The implications of gene heterozygosity for protein folding and protein turnover vol.265, pp.4, 2010,
  21. Role of α-helical domains in functioning of ATP-dependent Lon protease of Escherichia coli vol.40, pp.6, 2014,
  22. Protein Quality Control in Neurodegeneration: Walking the Tight Rope Between Health and Disease vol.34, pp.1, 2008,
  23. Structural Elements Regulating AAA+ Protein Quality Control Machines vol.4, 2017,
  24. Charge-Rich Regions Modulate the Anti-Aggregation Activity of Hsp90 vol.401, pp.5, 2010,