Effects of Catalysts and Blowing Agents on the Physical Properties and Cell Morphology of Polyurethane Foams

폴리우레탄 폼의 물성과 Cell Morphology에 대한 촉매와 발포제의 영향

  • Kwon, Hyun (R&D Center, Finetec Cooperation) ;
  • Lee, Su Heon (R&D Center, Finetec Cooperation) ;
  • Kim, Sang Bum (Major in Chemical Engineering, Kyonggi University) ;
  • Bang, Moon-Soo (Division of Chemical Engineering, Kongju National University) ;
  • Kim, Youn Cheol (Division of Chemical Engineering, Kongju National University)
  • 권현 ((주)파인텍 연구소) ;
  • 이수헌 ((주)파인텍 연구소) ;
  • 김상범 (경기대학교 화학공학전공) ;
  • 방문수 (공주대학교 화학공학부) ;
  • 김연철 (공주대학교 화학공학부)
  • Received : 2005.01.05
  • Accepted : 2005.03.14
  • Published : 2005.06.10

Abstract

Polyurethane foams (PUFs) were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI), seven polyols with different functionalities and OH values, silicone surfactant, two catalysts, and three blowing agents. Chlorofluorocarbon (CFC-11), hydrochlorofluorocarbon (HCFC-141b) and hydrofluorocarbon (HFC-365mfc) were used as blowing agents. The effect of gelling and blowing catalysts on basic properties and cell structure of PUF with HCFC-141b was investigated. The cell size of the PUF decreased with an increase in the amount of catalyst from 0 to 2 pph (parts per hundred polyol). In the case of gelling type catalyst, the compressive strength increased from 11.9 to $12.66kg_f/cm^2$ with an increase in the amount catalyst from 0 to 2 pph but the density did not change significantly. The gelling time, density, and compressive strength of the PUF with three different blowing agents were measured. There was no detectable change in their properties. However, the cell structure of PUF with HCFC-141b was not uniform as in the other systems.

References

  1. T. Y. Lee, H. S. Lee, and S. W. Seo, Polym. Sci. Tech., 10, 597 (1999)
  2. E. N. Doyle, The Development and Use of Polyurethane Products, McGraw-Hill Book Company, New York (1984)
  3. H. Fleurent and S. Thijs, J. Cell. Plast., 31, 580 (1995) https://doi.org/10.1177/0021955X9503100606
  4. P. A. Gunatillake, G. F. Meijs, and E. Rizzardo, J. Appl. Polym. Sci., 47, 199 (1993) https://doi.org/10.1002/app.1993.070470202
  5. H. S. Lee, N. W. Lee, K. H. Paik, and D. W. Ihm, Macromolrcules, 27, 4364 (1994)
  6. S. A. Baser and D. V. Khakhar, Polym. Eng. Sci., 34, 642 (1994) https://doi.org/10.1002/pen.760340805
  7. M. Ravey, Pearce, and M. Eli, J. Appl. Polym. Sci., 63, 47 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<47::AID-APP7>3.0.CO;2-S
  8. J. Sharpe, D. MacArthur, M. Liu, T. Kollie, R. Graves, and R. Hendriks, J. Cell. Plast., 31, 313 (1995) https://doi.org/10.1177/0021955X9503100402
  9. T. L. Fishback and C. J. Reichel, J. Cell. Plast., 30, 84 (1994) https://doi.org/10.1177/0021955X9403000105
  10. O. Volkert, Adv. Urethane Sci. Tech., 13, 53 (1996)
  11. J. A. Creazzo, H. S. Hammel, K. J. Cicalo, and P. Schindler, J. Cell. Plast., 31, 154 (1995)
  12. O. Volkert, J. Cell. Plast., 31, 210 (1995) https://doi.org/10.1177/0021955X9503100302
  13. W. J. Seo, H. C. Jung, Y. H. Kim, W. N. Kim, K. H. Choe, Y. B. Lee, and S. H. Choi, Polymer(Korea), 26, 185 (2002)
  14. U. S. patent 4,598,103 (1985)
  15. Michael Szycher, Szycher's Handbook of Polyurethanes, CRC Press, Florida (1999)
  16. J. A. Thoen, H. J. M. Grunbauer, and C. F. Smits, Polym. Mater. Sci. Eng., 67, 467 (1992)
  17. P. P. Barthelemy, A. Leroy, and J. A. Franklin, J. Cell. Plast., 31, 513 (1995) https://doi.org/10.1177/0021955X9503100602