Drosophila melanogaster Is Susceptible to Vibrio cholerae Infection

  • Park, Shin-Young (Department of Life Science, Sogang University) ;
  • Heo, Yun-Jeong (Department of Life Science, Sogang University) ;
  • Kim, Kun-Soo (Department of Life Science, Sogang University) ;
  • Cho, You-Hee (Department of Life Science, Sogang University)
  • Received : 2005.08.03
  • Accepted : 2005.09.14
  • Published : 2005.12.31

Abstract

Infection of Drosophila melanogaster adults with 6 Vibrio species revealed that V. cholerae was lethal (100% mortality) within 20 h as a result of systemic infection. Avirulent infection by V. vulnificus restricted the subsequent virulent infection by V. cholerae. The immediate transcription of antimicrobial peptides (AMPs), most notably Attacin A, was delayed in V. cholerae infection compared to V. vulnificus infection. Ectopic expression of Attacin A and Metchnikowin enhanced the survival of D. melanogaster upon V. cholerae infection. These results suggest that AMPs are important in the response to infections by Vibrio species and that the signaling pathways governing their expression may be targeted by V. cholerae virulence factors to elude the innate immunity of Drosophila.

Keywords

Drosophila;Infection;Immune Response;Vibrio;Virulence

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. Fuqua, W. C., Winans, S. C., and Greenberg, E. P. (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density- responsive transcriptional regulators. J. Bacteriol. 176, 269-275
  2. Hetru, C., Troxler, L., and Hoffmann, J. A. (2003) Drosophila melanogaster antimicrobial defense. J. Infect. Dis. 187, S327-334 https://doi.org/10.1086/374758
  3. Hoffmann, J. A. and Reichhart, J. M. (2002) Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3, 121-126 https://doi.org/10.1038/ni0202-121
  4. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A. (1999) Phylogenetic perspectives in innate immunity. Science 284, 1313-1318 https://doi.org/10.1126/science.284.5418.1313
  5. Kaito, C., Akimitsu, N., Watanabe, H., and Sekimizu, K. (2002) Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb. Pathog. 32, 183-190 https://doi.org/10.1006/mpat.2002.0494
  6. Kim, S.-H., Lee, K.-B., Lee, J.-S., and Cho, Y.-H. (2003) Genome diversification by phage-derived genomic islands in Pseudomonas aeruginosa. J. Microbiol. Biotech. 13, 783-788
  7. Lau, G. W., Goumnerov, B. C., Walendziewicz, C. L., Hewitson, J., Xiao, W., et al. (2003) The Drosophila melanogaster Toll pathway participates in resistance to infection by the gramnegative human pathogen Pseudomonas aeruginosa. Infect. Immun. 71, 4059-4066 https://doi.org/10.1128/IAI.71.7.4059-4066.2003
  8. Levahina, E. A., Ohresser, S., Bulet, P., Reichhart, J. M., Hetru, C., et al. (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 233, 694-700 https://doi.org/10.1111/j.1432-1033.1995.694_2.x
  9. Mansfield, B. E., Dionne, M. S., Schneider, D. S., and Freitag, N. E. (2003) Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell. Microbiol. 5, 901-911 https://doi.org/10.1046/j.1462-5822.2003.00329.x
  10. Nealson, K. H. and Hastings, J. W. (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 496-518
  11. Needham, A. J., Kibart, M., Crossley, H., Ingham, P. W., and Foster, S. J. (2004) Drosophila melanogaster as a model host for Staphylococcus aureus infection. Microbiology 150, 2347-2355 https://doi.org/10.1099/mic.0.27116-0
  12. Oliver, J. D. (2005) The viable but nonculturable state in bacteria. J. Microbiol. 43, 93-100
  13. Taga, M. E. and Bassler, B. L. (2003) Chemical communication among bacteria. Proc. Natl. Acad. Sci. USA 100, 14549-14554
  14. Lee, J.-S., Heo, Y.-J., Lee, J. K., and Cho, Y.-H. (2005) KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73, 4399?-4403 https://doi.org/10.1128/IAI.73.7.4399-4403.2005
  15. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., and Hoffmann, J. A. (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983 https://doi.org/10.1016/S0092-8674(00)80172-5
  16. D'Argenio, D. A., Gallagher, L. A., Berg, C. A., and Manoil, C. (2001) Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183, 1466-1471 https://doi.org/10.1128/JB.183.4.1466-1471.2001
  17. Croxatto, A., Chalker, V. J., Lauritz, J., Jass, J., Hardman, A., et al. (2002) VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. J. Bacteriol. 184, 1617-1629 https://doi.org/10.1128/JB.184.6.1617-1629.2002
  18. Leulier, F., Parquet, C., Pili-Floury, S., Ryu, J.-H., Caroff, M., et al. (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4, 478-484 https://doi.org/10.1038/ni922
  19. Dionne, M. S., Ghori, N., and Schneider, D. S. (2003) Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum. Infect. Immun. 71, 3540-3550 https://doi.org/10.1128/IAI.71.6.3540-3550.2003
  20. Tzou, P., Reichhart, J. M., and Lemaitre, B. (2002) Constitutive expression of a single antimicrobial peptide can restore wildtype resistance to infection in immunodeficient Drosophila mutants. Proc. Natl. Acad. Sci. USA 99, 2152-2157
  21. Apidianakis, Y., Mindrinos, M. N., Xiao, W., Lau, G. W., Baldini, R. L., et al. (2005) Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc. Natl. Acad. Sci. USA 102, 2573-2578
  22. Wicker, C., Reichhart, J. M., Hoffmann, D., Hultmark, D., Samakovlis, C., et al. (1990) Insect immunity, Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J. Biol. Chem. 265, 22493-22498
  23. Cox, D. R. (1972) Regression models and life tables. J. Royal Stat. Soc. Ser. B. 34, 187-220
  24. Lee, J.-S., Kim, S.-H., and Cho, Y.-H. (2004) Dithiothreitol attenuates the pathogenic interaction between Pseudomonas aeruginosa and Drosophila melanogaster. J. Microbiol. Biotech. 14, 367-372
  25. Fehlbaum, P., Bulet, P., Michaut, L., Lagueux, M., Broekaert, W. F., et al. (1994) Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 269, 33159-33163
  26. Khush, R. S., Leulier, F., and Lemaitre, B. (2001) Drosophila immunity: two paths to NF-${\kappa}B$ . Trends Immunol. 22, 260-264 https://doi.org/10.1016/S1471-4906(01)01887-7
  27. Jeong, K. and Kim-Ha, J. (2003) Expression of Rbp9 during mid-oogenesis induces apoptosis in egg chambers. Mol. Cells 16, 392-396
  28. Kaplan, E. and Meier, P. (1958) Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457?481, 562-563 https://doi.org/10.2307/2281868
  29. Henke, J. M. and Bassler, B. L. (2004) Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J. Bacteriol. 186, 3794-3805 https://doi.org/10.1128/JB.186.12.3794-3805.2004
  30. Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415
  31. Miller, M. B., Skorupski, K., Lenz, D. H., Taylor, R. K., and Bassler, B. L. (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110, 303-314 https://doi.org/10.1016/S0092-8674(02)00829-2
  32. Shao, C. P. and Hor, L.-I. (2001) Regulation of metalloprotease gene expression in Vibrio vulnificus by a Vibrio harveyi LuxR homologue. J. Bacteriol. 183, 1369-1375 https://doi.org/10.1128/JB.183.4.1369-1375.2001