Effect of Protonic Acids on the Reaction Rate in Chemical Polymerization of Polyaniline

폴리아닐린의 화학적 중합 시 반응속도에 미치는 양성자산의 영향

  • Hong, Jang-Hoo (Department of Fine Chemistry, Seoul National University of Technology) ;
  • Jang, Beom Soon (Department of Fine Chemistry, Seoul National University of Technology)
  • 홍장후 (서울산업대학교 정밀화학과) ;
  • 장범순 (서울산업대학교 정밀화학과)
  • Received : 2005.06.09
  • Accepted : 2005.07.25
  • Published : 2005.10.10

Abstract

Aniline was polymerized in various protonic acid (HF, HC1, HBr, HI, $H_2SO_4$) aqueous solutions with different acidity. During the reaction, the dimer formation and the reaction rate were examined as functions of acidity (pH) and the size of counter ions. Open-circuit potential measurements were carried out to investigate the effect of protonic acid on the reaction rate. The results showed that polymerization rate in HF aqueous solution was very slow and polymerization did not occur in HI aqueous solution. These results were explained in terms of acidity and power of oxidation. The ratio of formation of dimers varied with the kind of protonic acid, and the results were explained with the nucleophilicity, solvation effect, and mobility of counter ions.

Acknowledgement

Supported by : 서울산업대학교

References

  1. A. G. Macdiarmid and A. J. Epstein, J. Chem. Soc. Faraday. Disc., 88, 317 (1989) https://doi.org/10.1039/dc9898800317
  2. T. Vikki, L. O. Pietila, H. Osterholm, L. Ahjopalo, A. Takala, A. Toivo, K. Levon, and O. Ikkala, Macromolecules, 29, 2945 (1996) https://doi.org/10.1021/ma951555v
  3. C. L. Gettinger, A. J. Heeger, D. J. Pine, and Y. Cao, Synth. Met., 74, 81 (1995) https://doi.org/10.1016/0379-6779(95)80041-7
  4. C. Y. Yang, A. J. Heeger, and Y. Cao, Synth. Met., 79, 27 (1996) https://doi.org/10.1016/0379-6779(96)80126-3
  5. J. Yue and A. J. Epstein, J. Am. Chem. Soc., 112, 2800 (1990) https://doi.org/10.1021/ja00163a051
  6. J. M. Ginder and A. J. Epstein, Physical Review E, 41, 10674 (1990)
  7. J. Joo and A. J. Epstein, Appl. phys. Lett., 65, 2278 (1994) https://doi.org/10.1063/1.112717
  8. A. F. Diaz and J. A. Bargon, J. Electroanal. Chem., 111, 112 (1980)
  9. A. G. MacDiarmid and A. J. Epstein, Synth. Met., 69, 85 (1994)
  10. K. Tzou and R. V. Gregory, Synth. Met., 47, 267 (1992) https://doi.org/10.1016/0379-6779(92)90367-R
  11. F. Lux, Polymer, 35, 2915 (1994) https://doi.org/10.1016/0032-3861(94)90402-2
  12. M. Gustavo, M. Llusa, C. Maria, and C. Barbero, Polymer, 38, 5247 (1997) https://doi.org/10.1016/S0032-3861(97)82751-6
  13. E. T. Kang, K. G. Neoh, K. L. Tan, and H. K. Wong, Synth. Met., 48, 231 (1992) https://doi.org/10.1016/0379-6779(92)90064-P
  14. Y. Wei, X. Tang, Y. Sun, and W. W. Focke, J. Polym. Sci., part A: Polym. Chem., 27, 2385 (1989) https://doi.org/10.1002/pola.1989.080270720
  15. M. T. Gill, S. E. Chapman, C. L. DeArmitt, F. L. Baines, C. M. Dadswell, J. G. Stamper, G. A. Lawless, N. C. Billingham, and S. P. Armes, Synth. Met., 93, 227 (1998) https://doi.org/10.1016/S0379-6779(98)00016-2
  16. Y. Wei, K. H. Hsueh, and G. W. Jang, Polymer, 35, 3572 (1994) https://doi.org/10.1016/0032-3861(94)90927-X
  17. S. K. Manohar, A. G. Macdiannid, and A. J. Epstein, Synth. Met., 41, 711 (1991) https://doi.org/10.1016/0379-6779(91)91165-7