Chemical Speciation of Heavy Metals in Geologic Environments on the Abandoned Jangpoong Cu Mine Area

장풍 폐광산 주변 지질환경에서 중금속의 존재형태

  • Lee In-Gyeong (Dept. of Earth and Environmental Sciences, Institute for Basic Sciences, Chungbuk National Univ.) ;
  • Lee Pyeong-Koo (Div. of Geological & Environmental Harzards, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi Sang-Hoon (Dept. of Earth and Environmental Sciences, Institute for Basic Sciences, Chungbuk National Univ.) ;
  • Kim Ji-Soo (Dept. of Earth and Environmental Sciences, Institute for Basic Sciences, Chungbuk National Univ.) ;
  • So Chil-Sup (Dept. of Earth and Environmental Sciences, Korea Univ.)
  • 이인경 (충북대학교 지구환경과학과, 기초과학연구소) ;
  • 이평구 (한국지질자원연구원 지질환경재해연구부) ;
  • 최상훈 (충북대학교 지구환경과학과, 기초과학연구소) ;
  • 김지수 (충북대학교 지구환경과학과, 기초과학연구소) ;
  • 소칠섭 (고려대학교 지구환경과학과)
  • Published : 2005.12.01

Abstract

In order to identify the speciation of As and trace elements which are contained weathered waste rocks on the abandoned Jangpoong Cu mine area, five fraction sequential extraction was carried out. Concentrations of the extraction solutions which were acquaired each fraction were mesured by ICP-AES. Mineral characters of weathered waste rocks were determinated by XRD. The weathered waste rocks could divide into two types (Type I and type II). Type land type II weathered waste rocks are mainly composed of a quartz and a calcite, respectively. The most dominant speciation of As, Co and Fe is residual phase. Most of the speciation of Cd, Mn and Zn is residual phase for type I and Fe-Mn oxide phase for type II. In case of Cu, residual phase is predominant in type I and sulfide is predominet in type II. The most dominant speciation of Pb for type I and type II is associated with the residual phase and Fe-Mn oxide phase, respectively. At pH 4-7 range, the order of relative mobility considers Zn>Cu>Cd>Pb>Co>AS in type I, and Cd>Cu>Zn>Pb>As>Co in type II.

References

  1. 안주성, 김주용, 전철민, 문희수 (2003) 풍화광미내 고상비소의 광물학적.화학적 특성 및 용출 가능성 평가. 자원환경지질 36권, p. 27-38
  2. 이평구, 강민주, 최상훈, 신성천 (2004a) 광미 및 오염된 토양에서 중금속의 존재형태 및 잠재적인 이동도. 자원환경지질, 37권, p. 87-98
  3. Kersten, D and Forstner, U. (1986) Chemical fractionation of heavy metals in anoxic estuatrine and coastal sediment. Water Sci. Techno., v 18, p. 121-130
  4. Tessier, A., Campell, P.G.C. and Bisson, M. (19) Sequential extraction procedure for the speciation of particulate trace metal, analytical chemistry, v. 51, p. 844-851 https://doi.org/10.1021/ac50043a017
  5. 안주성, 전효택, 손아정, 김경웅 (1999) 구봉 금은광산 주변 지역의 비소 및 중금속에 의한 환경오염과 벼작물의 흡수특성. 한국자원공학회지, 36권, p. 159-169a
  6. 이진수, Klinck, B.A., Moore, Y, 전효택 (2000) 다덕광산 주변에서의 독성원소들의 환경오염 및 인체흡수도. 자원환경지질, 34권, p. 273-282
  7. 이민희, 최정찬, 김진원 (2003) 고로폐광산 주변 농경지토양 및 퇴적토의 중금속 오염 분포 및 복원 대책 설계. 자원환경지질, 36권, p. 89-101
  8. 이재영, 이인호, 이순호 (1996) 금속 폐광산 주변의 토양, 식물 및 하천의 중금속 오염에 대한 지화학적 연구, 달성 및 경산광산. 자원환경지질, 29권, p. 597-613
  9. 환경부 (2002) 대기환경연보. 2001, 198p
  10. 이평구, 조호영, 염승준 (2004b) 폐광산지역의 오염특성 조사와 평가를 위한 지구화학적 접근방법. 37권, p. 35-48
  11. 김지수, 한수형, 최상훈, 이경주, 이인경, 이평구 (2002) 장풍 폐광산의 산성광산폐수에 의한 침출수 유동에 대한 지구물리 및 지화학탐사 자료의 상관 해석. 지구물리, 5권, p. 19-27
  12. 이종혁, 김정환 (1972) 괴산도폭(1:50,000) 및 설명서. Geological survey of Korea